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THERMOMIGRATION: DEFINITION
Thermomigration: diffusion of particles subjected to a thermal gradient

- Density current along the
thermal gradient

Cold

Hot

Displacement of particles
towards the cold side
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THERMOMIGRATION: BACKGROUND

Liquids » Ludwig(1856) and Soret(1879) v

Gases » Tyndall(1870) and Strutt(1882) v

Solids » Pfann (1955) and Huttington (1968)

Surfaces » Less studied X

Recent experiments (growth [1, 2], transport [3,4]) involving surface thermomigration

[1] Xie, et al. Controlled growth of single-crystalline metal nanowires via thermomigration across a nanoscale junction. Nat Commun 10, 4478 (2019).
[2] Samarao, et al. Temperature Compensation of Silicon Resonators via Degenerate Doping. IEEE Transactions on Electron Devices. 59. 1 — 4. (2010).
[3] Barreiro, et al. Subnanometer motion of cargoes driven by thermal gradients along carbon nanotubes. Science. 320, 5877 :775-8. (2008)

[4] Leroy, et al. Determination of the Thermomigration Force on Adatoms. Phys. Rev. Lett.,131, 116202(2023)
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THERMOMIGRATION: TOOLS

Applied thermal gradients to surfaces:

‘ In materials, the transport of heat can be provided by :

—» Propagation of electrons —» Metals

Semiconductors and

——» Propagation of phonons —» insulators
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Objective: To understand the thermomigration of an atom or a cluster on a
crystalline surface in the presence of a thermal gradient

Tools: theoretical study with molecular dynamics simulation




MODEL

Schematic of the simulation box

Face-centered cubic crystal (FCC)
on the (1,1,1) surface
Atomic interactions —» Lennard-Jones potential
—» reduced Lennard-Jones units

Periodic conditions in x and y directions

Hot and cold regions (Nosé-Hoover thermostats)
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MODEL __p» Substrate in the steady state

Z —
'V T|=0.0038
y 'V T|=0.0033
'V T|=0.0027
'V T|=0.0017
X 'V T|=0.0008 —=—
I’ ----- RN
\\ \\ X
\\\ \‘, —» For the lowest gradients, the profile is linear.
—p For the highest gradients, the profile is non-linear.
Schematic of the simulation box —» Substrate leaves the domain of validity of

Fourier's law
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STUDY OF TRAJECTORIES

X X

T

‘ The adatom moves towards the cold region

‘ Competition between the drift induced by
the thermal gradient and the diffusion

mmm) The weaker the gradient, the weaker the drift

We intend to decorrelate the drift _ 0 6000 12000
induced by the thermal gradient and diffusion. t

24000
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THERMODYNAMIC POTENTIAL
hypothesis: the adatom is in local thermodynamic equilibrium

_ A(x,)
. o T(x,)
—» Probability of presence of the adatom is driven by : D { X, JoC €
. . . A (Xo) .
Thermodynamic potential @ ( X, ) = » Not directly computable
T( Xo)
Epadatomcv substrate(XO’ y ’ Z)
‘ a(q)<xo)) . andatomcsubstrate . 2 +Ecadatom(vx’vy’vz) aT<XO>
0 X T(XO) T(XO)Z 0 X

T Temperature

- ‘ Generalization of thermodynamics integration
Ep Potential energy for of a system subjected to a thermal gradient
Ek  Kinetic energy

F Force
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(I)(Xo):

-l T I
20 |V T|=0.0038 —— .
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THERMODYNAMIC POTENTIAL

m—) (I) depends on x mmmm) Plot (I) as function of %
[ depends on x
_ Alx) mmmp Characterize @ by the slope () which
D (x,)= passes through all the minimums
T (Xo)
[ - [ [
D 'V T|=0.0038 —— | =mmmp Slope () does not depend on the gradient
0 'V T|=0.0033 ——~
5| |V T|=0.0027 —— wmmmp Slope () related to the response of the
'V T|=0.0017 system to a thermal gradient that drives
or IV T|=0.0008 — | the adatom towards the cold region
5 7 Q > (rift
20 |
HOT
| I

From the expression of M’,Q is related to
the binding energy 0 X
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THERMODYNAMIC POTENTIAL

IV _ A(Xo) _ Q
(I)(Xo)_ T(XO) (I)lef_(I)-l- T
Thermomigration Diffusion
7 ADiff

1 Dy \

/T /T E

=) Slope Q ) AmpIitudeADiﬁoch

=) (Study the kinetics of the adatom with parameters Q and A Diff 11/18




KINETIC OF THERMOMIGRATION

I — Rateforjumptotheright T*=vte

Rate forjumptotheleft ' " =v~e

=mmp Average velocity of the adatom :
(vy=a(T'*+-T")

After a Taylor expansion to the first order:

(Q—E,)oT

D(T> e ox Q0T

m— V=, kT2 O

Diffusion coefficient : D(T)
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KINETIC OF THERMOMIGRATION

Temperature profil

'V T|=0.0038

'V T|=0.0033

'V T|=0.0027

|V T|=0.0017

'V T|=0.0008 ~—=—

Mean square displacement on <T>
isothermal surfaces

~

~

—a (Q_Em)ﬂ
dx 2k,T* 0X @
—_— e o

1 Thermodynamic potential
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KINETIC OF THERMOMIGRATION —— model

_— —— average
Application of our new model on the
trajectories of thermomigrations by integrating :

X

‘ Model in agreement with average
molecular dynamics trajectories

‘ This agreement validates our
approach and hypotheses X

0 1000 2000 3000 4000

A. Roux and N. Combe. Phys. Rev. B 108, 115410, (2023) t
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FROM ADATOMS TO CLUSTERS

Application of thermodynamic integration to a cluster ’ ™~
subjected to a thermal gradient A A

Extension of thermodynamic integration scheme to / \
clusters / \

Epadutom < substrate ( X 0’ y 2 Z)

/
5 +EC y0m (VX , VY, vZ) 6T(x0)> / \

8| ®(x,)]

Fx adatom < substrate |

T(Xo)

ox T(x,)° 0Xx

XO Position of the adatom

l' X 0 Center of mass of the cluster

Ep cluster < substrate (XO s Y Z) __________
o ((I) ( XO)) _ Fxclusterc:subsrrme B Epcluster < cluster (XO) Y Z)+ b + ECcluster (VX sVY s VZ) oT (XO)
0x T(x,) T(x,)’ 0x
82l(x ) 2
oT F Fx,_. 0
+ 1 2 (XO) Zj:l Xk' thsubsmne +ZIN Xi' Xk‘:l T 2 Zid Xk ' pk +Epk@ substrate
T(x,) 0x 2 2 0x 21my 15/18




FROM ADATOMS TO CLUSTERS

VI Thermodynamic integrations on cluster

N=3
0 i T T T T T |
50 - W 1
-100 E
-150 N=4
©
-200
-250
N=3 ——
300 F N=14 - B
50l NN;lg |VIT|:0.003|8 | | N=7
4.5 5 5.5 6 6.5
/T
s cffect of the size of the cluster
N=10

= cffect of the conformation
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0 i T T T T T |
50 - W 1
-100 E
-150 N=4
©
-200
-250
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300 F N=14 - B
50l NN;lg | |VIT|:0.003|8 | | N=7
4.5 5 5.5 6 6.5
/T
s cffect of the size of the cluster
N=10

= cffect of the conformation

Work in progress ... 16/18



\YAll Conclusion Perspectives:

Simulations and characterizations
of thermomigration

) Elastic effects on clusters
thermomigration

Generalization of thermodynamic
integration to measure the
thermodynamic potential

Drift Diffusion

-Transition state theory in the case of
a system subjected to a thermal
gradient to deduce a drift velocity

‘Preliminary results on clusters
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BINDING ENERGY ()

Il -
=) At the minima of a crystalline potential well V,>0 Binding energy
mmmp Harmonic approximation N
=) potential energy of the adatom wemmp (Ep(x,))=—V  +2 T(ZXO)

=) Kinetic energy of the adatom ) <Ek(x0)>:%T(x0)

Ep XO’ %Ep(xo,y,z)+Ec(vx,vy,vz) T (x,)
T(X0>2 0X
| (X, )y = 5120 (7 (1) = 7755 ~2In (T (x,)




ORDER OF MAGNITUDE

2 Lennard-Jones potential : Lennard-Jones reduced units :
E (r)=4 ag\” (g =l (r—g(—€ |3
Lj rl.j —4ac€ ]"_U) _(r_l]) ) O m02
T k E
"= EB ET==¢
Using copper’s parameter :
0.,=0.2338nm VT|=0.0038=76.5K/nm Q=1.9=0.77ev
ECU=_01-3‘;5479€1\6_271( = |% T|=0.0027=54.37 K /nm E, =0.23=0.09ev
Mo =20 9T, =03=14124K £=25000=7.45ns
Ty =005=2354K  Lx=44.9=10.5nm




DIFFUSION
3 mmmd Trajectory on the surface is diffusive =~ == No Lévy flights
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