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N°
T H E R M O M I G R AT I O N :  D E F I N I T I O NI Thermomigration: diffusion of particles subjected to a thermal gradient

∇⃗ T

Displacement of particles 
towards the cold side

Density current along the 
thermal gradient

ColdHot
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Pfann (1955) and Huttington (1968)

Recent experiments (growth [1, 2], transport [3,4]) involving surface thermomigration
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Applied thermal gradients to surfaces:

In materials, the transport of heat can be provided by : 

 MetalsPropagation of electrons

Propagation of phonons 
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Semiconductors and 
insulators
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Propagation of phonons Semiconductors and 
insulators
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Propagation of atomic vibrations (phonons) 
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Applied thermal gradients to surfaces:

In materials, the transport of heat can be provided by : 

 MetalsPropagation of electrons
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Objective: To understand the thermomigration of an atom or a cluster on a 
crystalline surface in the presence of a thermal gradient

Tools: theoretical study with molecular dynamics simulation



M O D E LII

Schematic of the simulation box

x

y

z

Periodic conditions in x and y directions

Face-centered cubic crystal (FCC)

Adatom on the (1,1,1) surface

Hot and cold regions (Nosé-Hoover thermostats)

Atomic interactions          Lennard-Jones potential
 reduced Lennard-Jones units
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Schematic of the simulation box

Substrate in the steady state

For the lowest gradients, the profile is linear.
For the highest gradients, the profile is non-linear.

Substrate leaves the domain of validity of 
Fourier's law



III S T U D Y  O F  T R A J E C T O R I E S

The weaker the gradient, the weaker the drift 

Competition between the drift induced by 
the thermal gradient and the diffusion
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|∇⃗T|=0.0027

|∇⃗T|=0.0033

|∇⃗T|=0.0038
x

t

x

x

x

The adatom moves towards the cold region

We intend to decorrelate the drift 
induced by the thermal gradient and diffusion.



T H E R M O D Y N A M I C  P O T E N T I A L

Thermodynamic potential Not directly computable

Ep
Ek

T
Potential energy
Kinetic energy

Temperature

Φ(x0)=
A (x0)
T ( x0)

IV
Probability of presence of the adatom is driven by : p(x0)∝e

−
A (x0 )
T (x0)
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hypothesis: the adatom is in local thermodynamic equilibrium

Generalization of thermodynamics integration 
for of a system subjected to a thermal gradient

∂ (Φ(x0))
∂ x =−⟨ Fxadatom⇐ substrate

T (x0) ⟩−⟨ Epadatom⇔ substrate(x 0, y , z)
2

+Ecadatom(vx , vy , vz )

T (x0)
2

∂T (x0)
∂ x ⟩

ForceF



|∇⃗ T|=0.0038

x

IV

∂Φ
∂ x

Probability of presence is higher on the cold region than on the hot region

T H E R M O D Y N A M I C  P O T E N T I A L

HOT COLDΦ

x
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p(x0)∝e
−Φ(x0)

Φ(x0)=
A (x0)
T (x0)



|∇⃗ T|=0.0038
|∇⃗ T|=0.0033
|∇⃗ T|=0.0027
|∇⃗ T|=0.0017
|∇⃗ T|=0.0008

IV

Characterize        by the slope       which 
passes through all the minimums

T H E R M O D Y N A M I C  P O T E N T I A L

1/T

HOT COLD

Φ
Slope      related to the response of the 
system to a thermal gradient that drives 
the adatom towards the cold region

Slope      does not depend on the gradient
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−Q

Q

Q

QΦ

From the expression of       ,      is related to 
the binding energy

Q

Φ(x0)=
A (x0)
T (x0)

Q drift

∂Φ
∂ x

 depends on x Φ
 depends on x 

Plot         as function of 

T
Φ 1

T



IV

Slope 

T H E R M O D Y N A M I C  P O T E N T I A L

ΦDiff

1/T

ADiff

Φ

ADiff ∝
Em

T
  Amplitude      

−Q

1/T

Thermomigration Diffusion

ΦDiff=Φ+
Q
T

Φ(x0)=
A (x0)
T (x0)

Study the kinetics of the adatom with parameters      and

Q

Q ADiff
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Γ⁺

Γ⁻

⟨v ⟩=−
D(T )
kB

e
−a

(Q−Em)

2 kBT
2

∂T
∂x Q
k BT

2
∂T
∂ x

Rate for jump to the right 

D(T )Diffusion coefficient :

Φ

xm xm+a

⟨v ⟩=a (Γ⁺−Γ⁻)

Average velocity of the adatom :

V K I N E T I C  O F  T H E R M O M I G R AT I O N
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Γ⁺=ν⁺ e
−[Φ( xm+a2 )−Φ(xm)]

Rate for jump to the left Γ⁻=ν⁻ e
−[Φ( xm+ a2 )−Φ(xm+a )]

After a Taylor expansion to the first order:
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V K I N E T I C  O F  T H E R M O M I G R AT I O N

dx
dt

=−
D(T )
kB

e
−a

(Q−Em)

2 kBT
2

∂T
∂x Q
k BT

2
∂T
∂ x

Mean square displacement on 
isothermal surfaces
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Application of our new model on the 
trajectories of thermomigrations by integrating :

Model in agreement with average 
molecular dynamics trajectories

x

x

x

model
average

dx
dt

=−
D(T )
kB

e
−a

(Q−Em)

2 kBT
2

∂T
∂x Q
k BT

2
∂T
∂ x
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K I N E T I C  O F  T H E R M O M I G R AT I O NV

This agreement validates our 
approach and hypotheses
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A. Roux and N. Combe. Phys. Rev. B 108, 115410, (2023)



Application of thermodynamic integration to a cluster 
subjected to a thermal gradient
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F R O M  A D AT O M S  T O  C L U S T E R SVI

∂ (Φ(x0))
∂ x =−⟨ Fxadatom⇐ substrate

T (x0) ⟩−⟨ Epadatom⇔ substrate(x 0 , y , z)
2

+Ecadatom(vx , vy , vz )

T (x0)
2

∂T (x0)
∂ x ⟩

∂ (Φ( x0))
∂ x

=−⟨ Fx cluster⇐ substrate

T (x0) ⟩−⟨ Epcluster⇔cluster ( x0 , y , z)+
Epcluster⇔substrate (x0 , y , z)

2
+Ec cluster (vx , vy , vz)

T ( x0)
2

∂T (x0)
∂ x ⟩

Extension of thermodynamic integration scheme to 
clusters

N=10

x0 Center of mass of the cluster

x0 Position of the adatom

+⟨ 1
T (x 0)

2

∂T (x0)
∂ x ∑k

M [ xk ' Fxk⇐ substrate

2
+∑i

N
xi '

Fx k⇐ i

2 ]⟩+⟨ ∂2
1
T

(x0)

∂ x2
∑k

M
xk ' [ pk

2

2mk
+Epk⇔ substrate]⟩



Thermodynamic integrations on cluster
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F R O M  A D AT O M S  T O  C L U S T E R SVI
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F R O M  A D AT O M S  T O  C L U S T E R SVI
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Work in progress ...



V Perspectives:

Elastic effects on clusters 
thermomigration

Simulations and characterizations
 of thermomigration

Conclusion

Generalization of thermodynamic 
integration to measure the 
thermodynamic potential

Transition state theory in the case of 
a system subjected to a thermal 
gradient to deduce a drift velocity  

Drift Diffusion
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Preliminary results on clusters
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Thank you for your attention !



B I N D I N G  E N E R G Y1
At the minima of a crystalline potential well

Harmonic approximation

kinetic energy of the adatom

potential energy of the adatom ⟨Ep(x0)⟩=−V 0+2
T (x0)
2

⟨Ek (x0)⟩=
3
2 T (x0)

Φ(x0)min=
−V 0

2T (x0)
−2 ln (T (x0))=

−Q
T (x0)

−2 ln (T (x0))

V 0>0 Binding energy

Φ

∂ (Φ(x0))
∂ x =⟨ ∂Ep( x0 , y , z )

∂ x
T (x0) ⟩−⟨ 12 Ep(x0 , y , z)+Ec (vx , vy , vz )T (x0)

2

∂T (x0)
∂ x ⟩



O R D E R  O F  M A G N I T U D E2

|∇⃗T|=0.0038=76.5K /nm
|∇⃗T|=0.0027=54.37K /nm
T HOT=0.3=1412.4 K
T COLD=0.05=235.4 K

Q=1.9=0.77ev
Em=0.23=0.09ev
t=25000=7.45ns
Lx=44.9=10.5nm

ELJ(rij)=4ϵ [( σ
r ij )

12
−( σ

r ij )
6 ]

Using copper’s parameter :

σCu=0.2338nm
ϵCu=0.4057 eV

Lennard-Jones potential :

mCu=105.4910
−27 kg

r ⁺= r
σ

T ⁺=
T kB
ϵ E⁺= E

ϵ

Lennard-Jones reduced units :

t ⁺=t ( ϵ
mσ2 )

1
2



D I F F U S I O N3
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Trajectory on the surface is diffusive No Lévy flights
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