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Scales for phonons in ultrathin films, multilayers, nanojunctions,..
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Phonon dispersion of cristalline Silicon (Si) at room temperature
along different directions of g wavevectors in the 1st Brillouin zone
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Measured phonon dispersion for Si with g units of 217/a,
where a is the lattice parameter of the unit cell.

1 THz = 4.1357 meV = 33.356 cm! Dolling (1963);
reproduced fronklliot and Gibson (1982)



Phonon energy (meV)

Phonon dispersion of the solidified fcc crystalline Neon (N€, rare gaz) at
4.7 K temperature, along different g directions in the 1st Brillouin zone
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The 1st Brillouin zone of
the planes (100), (110),
and (111) of a fcc crystal
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Measured phonon dispersion in the solid cristalline fcc Ne at
4.7 K, g in units of 21/a, where a is the lattice parameter

Leak et al (1969);
reproduced fronklliot and Gibson (1982)



Phononics at the lower end of the Nanoscale []1 nano

The vibration dynamics in phononics at the atomic scale,
for stable crystalline nanostructures



Phononic thermal conductance in 2D systems
across an integrated nanostructure

extended atomic well

H

Schematic figure for ultrathin crystalline Gold (Au) film of two semi-infinite atomic
layers, with an extended atomic well integrated nanostructure. The Y axis is parallel to

the well along the colour online, and Z axis normal to the film.

1st and 2nd nearest neighbours force constants, ab

. .. . Khater et al, Eur. Phys J. B0, 363 (2011
initio computations : k,=56 Nm™*and k,=7.56 Nm*! / (2011)

WU et al, Phys. Rev. B57, 134103 (2003)



Dimensionless frequency {2
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Fig. 2. (Color online) Typical phonon dispersion curves for
the ultrathin Au films are presented over the BZ, ¢, = [—m, 7],
for a chosen component @, = m/3 of the dimensionless wave-
vector. The six available modes are indexed j' = 1,2, 3,4, 5,6,
from bottom to top.

1st and 2nd nearest neighbours ab initio force
constants k,=56 Nm*and k,=7.56 Nm; r=k,/k,
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Fig. 3. (Color online) The group velocities vy; for the phonon
modes in the bulk of the Au thin films as a function of the
dimensionless frequencies 2, for a chosen component p, = 7/3
of the dimensionless wave-vector.

0= w/w,

Wp =54 meV =13.04 THz



Phase Field Matching Theory (PFT) method computes the Transmission Probability
t of the j’.th phonon mode incident from a lead, across a nanostructure

The ensemble of lead phonons { | } , whether
propagating or evanescent, should be considered

Consider an incident lead phonon j’ which scatters at the I?f.j’ Transmission amplitude of j
nanostructure into transmitted and reflected { ] } phonons B i Reflection amplitude of j

For the complete description of the reflection and transmission
processes, calculate the Reflection and Transmission Probabilities:
given respectively by
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Method to compute the Phononics Thermal Conductance
across nanostructures and interfaces
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where 1(Q,) is the Transmission Probability, across
the nanostructure, for the i. th lead phonon
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Fig. 4. (Color online) (a) The transmission scattering spec-
tra for the atomic well boundary in the Au thin films system,
presented as a function of the dimensionless frequencies (2, for
the odd numbered phonon eigenmodes, for a chosen component
wy = /3 of the dimensionless wave-vector, and under bound-
ary hardening A = 1.05. (b) as in (a) for the even numbered
phonon eigenmodes.

k=
g y
o i
r=0.135

:E A=1.05 |
[*]

=

=

E .
=

g

g i

200 250 300

Temperature T [K]

a5t b) K2 :

25
10° kg

r=0135
1 A=1.05

Thermal conductivity K, [Wm K]

0.5} E

0 50 100 150 200 250 300
Temperature T [K]

Fig. 6. (Color online) The phonon coherent thermal conduc-

tivities £;r as a function of the temperature, at the Au atomic

well boundary, for theaevwéh numbered phonon modes, under

boundary hardening A = 1.05. (b) as in (a) for the even num-
bered phonon modes.



Phonon conductance
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The total spectral conductance, across the Au nanostructured atomic
well, between 2D film layers, for phonons incident at a ¢, = 1/3 angle



PFMT theory for the phonon ballistic thermal transport
on gold nanowires across topological nanostructures

The gray rectangle indicates

. . . the considered nanostructure
Gold (Au) nanowire with a topological nanostructure

The topological nanostructure is in the form of an L bend along the Au nanowire.
The primitive unit cell is of 2 atoms along Y in the XY plane, with two vibration degrees of freedom

1st and 2nd nearest neighbour force constants of ab 1= LU,/LL:-.:,
initio computations : k;=56 Nm™and k,=7.56 Nm Wp =54 meV = 13.04 THz
Wietal, Phys. Rev. b7, 134103 (2003) Belhadi and Khater, Physica B8, 97 (2017)

Fellay et al, Phys. Rev. B55, 1707 (1997)
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PFMT computed Transmission Probabilities
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Fig. 1. (a) Typical phonon dispersion curves are given for the considered perfect Gold
nanowire. The dispersion curves are shown over the interval ¢,=[-7 , +n] of the first
Brillouin Zone. The modes are indexed from the bottom to top. (b) Phonon group velocity
vg for confined phonon branches as a function of the dimensionless frequency £, in a one
dimensional Gold nanowire.




The transmission probabilities and
phononic thermal conductance for
the L2al system
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The transmission probabilities and
phononic thermal conductance for
the L3aL system

nanostructure

visible Fano and Fabry-Pérot effects
on the Transmission Spectra
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The transmission probabilities and
phononic thermal conductance for
the L4al system
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t (perfect Gold nanowire)
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Fig. 5. (a) T'he total phonon conductance of the svstem as a function of the scattering
frequency (2 for different shaped joint nanostructures width! (b) Low temperature
behavior of phonon thermal conductance k of the svstem as a function of the temperature
T for different shaped joint nanostructures width.
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Phononics at higher Nanoscales = a few nanos

The continuum dynamics for isotropic and
anisotropic materials



Some properties of phonons ; _ o )
Thermal transport in solid materials is dominated

by acoustic phonons; at room-temperature the

Acoustic phonons of relatively long lifetimes, contribution of longitudinal phonons is only [13%

travel over distances of 10 to 100 nm as their
wave vectors go from 0.3 A* (A J2.1 nm)
to 0.1 A1 (A6.3nm)

G.P. Srivastava, The Physics of Phonons (CRC Press 2023)

Lory et al, Nature Communications vol. 8, article 491 (2017) 100¢

Gold-Parker et al, PNAS 115 (47), 11905 (2018)
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Kapitza thermal conductance

schematic figure of the ballistic and diffusive channels for
the transport of energy from a solid to liquid Helium

Ballistic Islands Diffusive
channel* channel
20 phonons
[ 77 | ‘§gﬂg_hehum layer

——— e e . - r’ .;_-——L_-
, ®

Solid L,T phonons

The diffusive channel is related to the elastic dynamics of irregularities at the interface
solid surface — liquid He. These may be modelled as cylindrical islands of different sizes.

Khater and Szeftel, Phys. RevB 35, 6749 (1987)



Scattering of elastic waves at the plane surface of a half-space isotropic material

The reflection of longitudinal & transverse waves at the
plane surface of an isotropic material are calculated by
surface elastic boundary conditions:

The dynamics of solid matter as continuous
media are based on the Theory of Elasticity

Landau & Lifshitz, Theory of Elasticity (Oxford 1970)
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Loudon, J. Phys. C: Solid State Phy4.(1978)

wave vectors and polarisation vectors of the
incident & reflected waves on the idealized

flat surface of the isotropic material. Green functions were derived for the displacement gradients
associated with the acoustic vibrations, to establish a theory for

Brillouin light surface scattering at room temperature



Modeling flexure dynamics of the cylindrical islands at the surface

The islands have a degree of freedom of elastic
flexure about the z axis, absent in a flat surface.

UF denotes the flexure displacement amplitude. It

can be calculated by the island elastic boundary
conditions

AU
_1_8; . =T Un+ T Un=

v
{ - A‘Iﬁi - BQE;_. - 2q5L QflL} —mE U{}L exp [HIEL 71+

{+ Agir @z~ Bgin @n + (@ — G50} = Uy expligin 2

The red dots correspond to irregular islands

qor = (051, 0,95.) qor = (Qor 0,907)
qr =(Q1,0,97)  qr =(07.0.97)

qr=w*/vi  q;=w*/v]

[ A=(QFf QF — QF ¢f +2Q1 Q4 ¢ ¢»)/Q% gk
B=(-qf QFf +qf g% +2Q% Q%5 ¢i g8/ Q5 g5 .

Khater, Europhysics Letterg, 539 (1986)



Island flexure dynamics excited by
scattering bulk phonons at the surface

At low temperatures [0.01° - 2° K] of Kapitza
conductance experiments, the T phonons are
predominant over L phonons, as carriers of
the elastic energy in the solid.

T phonons induce the harmonic flexure at the
free surfaces of the cylindrical islands :

, w —im/2 iq(z)T-C —lwt
Up yz:_¢=2—v— cos(2a)ugyre e e
T

a=sin" Q3 vr /)

denotes the angle of incidence of the T bulk
phonons.

The equation of flexure dynamics of the
circular islands is well known

o%ur (1—v)EI, d*up
+ -
8t2 PAg 824

E and v are, respectively, the Young’s modulus of elastici-
ty and Poisson’s ratio, of the solid. /. denotes the mo-
ment of area of the islands about their neutral axes.
These quantities are well known in the theory of flexure of
one-dimensional rods. A4, are the cross sectional areas of

the islands. '

The strain energy W(¢, ) of flexure calculated for
cylindrical islands, with boundary conditions at z
=0, and the variable heights z = {, and radii ¢, is

A
W(§,§)———47§pgv%§3 cos?’(2a )fiw

pe=I[pAs/(1—v)EI:]'"*

incident phonon energy  angle of incidence



The partition of energy for the diffusive channel

Diffusive
channel

Solid L, T phonons

The solid He layer of atomic width d is attached to
the island surface by van der Waal forces.

The partition of the flexure energy between the
island, and the solid He layer, yields W,

El
E

1,8
¢ E

W, = d=—W(E,©)

NB: The Young modulas of elasticity for the solid He
layeris E’ << E of the solid island

The solid He layer is sandwiched between the island
surface, and the surrounding liquid He. It is realistic
to suppose that the island harmonic flexure causes
friction-induced 2D phonons in the He layer

The diffusive transmission of dynamic energy
consists hence of the excitation of 2D phonons in the
solid He layer and their annihilation via random
inelastic scattering in the surrounding liquid He.



Energy transport at the solid - liquid Helium The heat flux due to the flexure of the islands,
interface at the solid(s) - liquid He interface can be
hence determinedas /
)]
A

The Transmission Probability )X, for phonons

inci i /2 :
Qf ho at |nC|.dent .angle a, cross the |slan<:!s f°° X (@,a)n(w)D(w)do fﬂ ’;‘UT sina cosa da
involves configurational averages over their 0 0

rando.m distributions of cross sectional areas :eﬁ‘3(1+8/3_1)CT4E'd
and hights.
The coefficient ), is determined as N(w) = phonons Bose-Einstein factor, and
D(w) the density of states of bulk phonons
1 d Wi (its Debye model).
X(w,a)=— [ [N oagas . ‘
. o 0 ¢
T is the phonon lifetime <1 :EB_3( 1488~ 1 )CT4®;2,d
oT <<1 atthelow temperatures [0.01° - 2° K] A
The value of the Debye temperature O, of the
‘ solid He layer varies with its molar volume,
2 and temperature T.
X\(w,a)=¢B(1+88~")CE ’; cos*(2a Mo Khater and Sreftdl, Phys. RevB 35, 6749 (1987)
£ = surface density of islands, a solid lattice Sample and Swenson, Phys. Rev158, 188 (1967)

constant, [ scaling for & and{, and C the

. Sewart et al, Proceedings of the 13th Int. Conference
numerical product of known constant terms.

on Low Temperature Physics, pp. 180 — 185 (1974)



The thermal Kapitza resistance

The development of the theoretical model leads hence to a general analytical form for the
thermal Kapitza resistance across the irregular interface of solid materials and liquid He

R.TI— p1+8p~ ")~
K 2ec772®%, +70,30, /3T)
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FIG. 2. Plots of R T’ with temperature for a solid-liquid *He
interface at two different pressures. The molar volume of the
solid *He layer is 11.42 cm’mol~'. B=10 and e=1%. The
points are the experimental measurements of Anderson et al.

(Ref. 33). See text for details. Phys. Rev135A, 910 (1964)
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FIG. 4. Plots of R T* with temperature for a solid-liquid *He
interface at two different surface densities of the defects, e=1%
for curve B and £€=0.33% for curve C; all other terms are the
same as in Fig. 2. The points are the experimental measure-
ments of Johnson and Anderson (Ref. 34). See text for details.

Phys. Lett37 A, 101 (1971)
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Develop using the two methodologies together across the Nanoscales ?
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