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Photovoltaics vs. th

> linstitut
d'électronique

Solar energy

Solar spectral flux density (W m* nm™)

0

Sun
moving
intermittent =
source
2
0,=6.85105sr 0-1Wem
g~ 1 kW.m2
concentration
C = 46.200 (max) Q=CQ
Q=2nsr
A P
PV cell a
cooling system /X el R
GaAs Sli
A0 Do
! A5
! ! non tunable
i spectrum

2 3
Wavelength (um)

Thermal energy
waste heat, combustion,
nuclear, concentrated solar

motionless

stable
source

thermal
radiation
emitter

PV cell

storage
possible

Q=2nsr

Q.=2mn sr

Q= (A, Ac, d)

cooling system

QJ'nc =Fo Ta4

(162 kW.m=2 for
F=1;T,=1300 K)
InSh,

radiation flux (10° W m™ um™)

Spectral hemispherical

InGaAsSb

spectrum

tunable :
(To Ese) |

‘Wavelength (um)

16.2 W cm-2

Datas & Vaillon,

book chapter,

2020

TPV: PV conversion of (infrared) thermal radiation
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Major impact of reflecting out-of-band photons ]

o IES| Institut d’Electronique et des Systémes

www.ies.univ-montp2.fr


https://doi.org/10.1016/B978-0-12-819955-8.00011-9

Introduction — Basics

> l'institut

selectronique  Major differences be

The spectrum of the radiation source can be tuned

Tuning the cell reflectance and
the emittance of the source
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Possible additional use of a filter suppression of below E; emittance
between the emitter and the cell

*k Wang et al., SOLMAT, 2022 DeSutter et al., ECM, 2016
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Thermal behavior — thermal design / management

e

see e.g. Blandre et al., Optics Express, 2019  Roy-Layinde et al., SOLMAT, 2022
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¢ f

[ Performance metrics = f(-radiation- heat transfer and electrical transport) ]
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~ 2.39 W/cm? (T, = 2400 °C)

Towards 50% pairwise efficiency! But...
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Solar TPV

Bhatt et al., Solar Energy, 2020
0.73eV GaSb TPV cell T, = 1403 °C

~1.71 W/cm?2
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Near-field thermophotovoltaics
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Theoretical predictions: huge near-field enhancements of the ,
the efficiency may go up or down
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Lucchesi et al., TPV-13, 2022
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H 4 2 . .
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Nano Letters, 2021

Specifi

c limitations under high illumination?
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p-doped silicon
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Milovich et al., JPE, 2020

«I>>% . «— Aufront contacts

Thap Depletion egion| % series resistance R is caused by:

: .
“ | | n-region Ny,

f. | | Au back reflector and contacts

n-doped InAs substrate N, .,
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4
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Ly - lateral transport in the cell
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(a) (b)
Datas & Vaillon, Nano Energy, 2019
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high illumination — high current (/)

100

Far .
+ high 7,

Distance, d (um)

... kill” the near-field radiation effects on

another “killer” (of ): phonon-polaritons of IllI-V materials

Chen at al., APL, 2015

Solutions to be found as in Concentrating Photovoltaics (CPV)
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Baranov et al., Nature Materials, 2019
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|I e8
1 5
1 §§ .
‘I :E) \ . .
138 Electrical transport in a "
! multilayered medium
LaPotin et al., Nature, 2022

Modelling approaches and simulation tools?
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Electrical transport properties literature, databases, models
- bandgap (E,) seee.g. Vurgaftman etal. JAP, 2011 |OFFE website
- effective masses
- mobilities (x) ] + majority carrier (doping) concentrations

- lifetimes (radiative, Auger, SRH)
- surface recombination velocities iy .
QY iller’” o

Electromagnetic (&) / optical (m) / o for s aners
radiative (x) properties

Lorentz model
for phonons

"

complex permittivity & =¢&'+i &

optical gap .
'r\[ (Moss-Burstein effect) ] (IN-V semiconductors)

s_"'

complex refractive index m=n+i k phonon polariton 1=~
(resonance in the S~
1 , , field -
I+ Kramers-Kronig relation ._ 47 k nearfield E E

A see e.g. Vaillon et al., Optics Express, 2019 Milovich et al., JPE, 2020

Questions to ask yourself - Can the structure be functional at the selected temperature?
- Aren’t the contacts on the cell missing?
Hi - Can the structure be fabricated?

[ Strong bases required for meaningful simulations]
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(a) Ideal spectral control

Hemispherical

Hemispherical

—

Emittance

Emittance

Broadband

in] out of
band

Narrow-band

Apy

out of | in
band | band

Apy

Epy

Epy

Materials and structures

Rare-earth mantle

(b) Angular emission Sakakibara et al., JPE, 2019

of thermal radiation

Emitter
[ ] Off-normal

Ae

— Normal

PV Cell

I

(c) View factor loss

Emitter PV Cell

<l

et al., SOLMAT, 2022
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Far
field

Pfiester & Vandervelde,

Towards practical emitter implementation

Used in prototype
system demonstrations

Fabricated and measured

Simulated

Bulk emitters with or without
anti-reflection coating (ARG) on top

PSSa, 2016

Naturally selective emitters based
on electronic transitions.

Unspecified gas Er-doped ~ ALOy |
Greybody mantle in ytiium  Er;AlsOy, |
emitters Metals Coleman  aluminum composite |
. with ARC Without ARG lantern [20] gamet[21]  [22]
AR C HIO2  SigN, Unspe- Pt
on on onW on i[17.18] cified [i2] Y50, o0a Y00
WPt 18] textureds; metal maniie manta  SIG or A0
i o
[13] [14] W 18]} alloy [19] Bape 2 ooz
1D photonic 2D photonic crystal Multilayer stack made of
crystal made of array of subwavelength layers
made of cylindrical air cavities in of metal & dielectric
Si& T Ta3%W alioy} W & yitria- Mo
SIO; With HIO,  with HIO H
on Si coating coating
[6,27,28] 2 [

Co &/or Ni-
doped Al,Og,
MgO,& spinel

(A MgO, ) [35-37]

Rare garn material-based

1D photonic

{Er,Os, YD,05  Composites of Er, Ho,  Er,0; Er,0,-doped
i pOWﬂQVS oryYb & qLIﬂ"Z, cellulose mantle porous &
3 DYQSSEU into i licate, Z

wafers [38] acivated carbon fibers{30] silica [40]

{Er, Ho, Tm, or Yb- Er,0g-doped Plasma-spray coated Ag-Si0,Ag
i doped gamet nanofibers of  ¥DyOg, YD, Yy 5AIOy, i | Fabry-Pérot

i (Al:Oyz) Or YAG  TIOp, ALOg, ZrO;  of ErOg 0n Sic cavity

! (Y:ALOy;) [41-44] [40,45-47]  or MoSl, [48,49] [50]

2D photonic crystals or 2D periodic structures

2D array of air cavities etched into substrate

2D array of protrusions }

Rectangular

cavities in singl

poly-crystallin
Ta[51,52]

Cylindrical cavities made in

on substrate

PUETT  Single T Poly- | Sputtersd

e i coated coated

3D photonic crystals

i . TaBEW W carbon |}
le-/t Au- crystalline crystalline Ta; HO,- alloy; nanotube i}
T filled with composite

W Microbumps
posts
onw

e opal
with HiB; i1 iTAU squares Au'squares  Prcircies  TiN square Pt crosses :5 altemating
HIO, [68] onALO; onMgF, onALO; looponSiO, ©onALOj; | layers of
Pt-coated coating spacer spacer  spacer spacer  spaceron ; HIO, &
[65] 66] [67,68] onAU[69] OnAU[70] onPt[71] onTIN[72] TIN[7374]: W [75]
1D grating: 3D photonic
rectangular siits ¢ 2D array of nanowires
embedded In material
i TN W Au ::Wsquares W orMo Au squares
in in in i} onsSio2 squares on  on GepSbyTey;
i Multilayer i Sl ALO; AlLO; i spacer  AINspaceron  spacer on
crystal ©  stack i [82] [83] [B4] on W [85] W or Mo [86] Au [87]
Cylindrical ; i Chirped mirrroron ;- Pattemed Sio2-coated Muttilayer Si squares
alr cavities ; iEr-doped Al gametii a-Geon W nanospherss  stack with on Al-doped
invo2 { wafer on dielactric | Au on'W with W Ta and zinc oxide
79] mirror [81] : [88] coating on top [89]  TiO2 [82] on Ta [90]

(spectral;

directional /

hemispherical) emittance?



https://doi.org/10.1117/1.JPE.9.032713
https://doi.org/10.1002/pssa.201600410
https://doi.org/10.1002/pssa.201600410
https://doi.org/10.1016/j.solmat.2021.111554

> l'institut

Far field calculation of

_ emittance
Thermal EM waves
0 <0, Total internal reflection
AR i 0> 0,
y \,\: ,” o -V ge
2 V ~ f: -l
N g
Propagatin;% V\Vrgvanescent
waves i waves
v
gC

Absorption ¢ ;

reflections in the cavity

Ec€c

Eoff =
Eo + Ec — EgEC

effective emittance of
the emitter-cell pair

Modelling and simulation — Ther

el e Selective emitter

Thermal emitter

d < A

¢

R
N
i

Propagative Frustrated Surface +
mode mode mode
PV cell -

Song et al., SOLMAT, 2022

full calculation of radiation exchange
in the emitter-cell system

(Wednesday’s lecture) [ |

Kirchhoff
emittance = absorptance Methods Fluctuational Electrodynamics (FE)
!

T fer/Scattering-matri Based on discrete
Rigorous Coupled Wave ransfer/Scattering-matrix s
Approximation Finite Difference Time Domain
(REAY (FDTD)

Boundary Element

+... Method (BEM) +...

*
see e.g. Francoeur, book chapter, 2017 Cuevas & Garcia-Vidal, ACS Photonics, 2018
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https://doi.org/10.1016/j.solmat.2021.111556
http://dx.doi.org/10.1021/acsphotonics.8b01031
https://link.springer.com/referenceworkentry/10.1007/978-3-319-32003-8_63-1

Modelling and simulation — Elec
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BIEIESTOR=F|Elp[=RBIERg[o]e [SIAN Shockley & Queisser, JAP, 1961

Generation
Recombination semiconductor
material
electron ?t_“
E. 9 IR J ( )
2 /I/M\. ] i i | back to ] = ( V) V
= pr” el i 1 | equilibrium -I -I
€ (Generation)] 1 |} q P,
() I 1 | (Recombination)
1o Load
/[/1/\‘ E-nv-E3 i | , heat V
E A 4 /lt/ = 1 O ; )
¥ ';‘I"Q ® = see details in e.g.
ole
(+q) Datas & Algora, SOMAT, 2010
rate of photons absorbed _
rate of e-h pair Recombination Song et al., SOLMAT, 2022

current density

JWV) = q{Gg — [Re(V) + Ry (V) ]} oot soiicics e recombination l,

voltage

rate of e-h pair rate of photons emitted
Generation by radiative Recombination

leaving the cell a radiation model
(external luminescence)

No information about local quantities in the cell
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https://doi.org/10.1063/1.1736034
https://doi.org/10.1103/PhysRevApplied.8.014030
https://doi.org/10.1016/j.solmat.2021.111556
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Modelling and simulation — Elec

Thre

Governing equations
with local quantities

Sze et al.
book, 1985 (1st ed.)-

2021 (4" ed.)

vacuum
p-type |ro

1D Blandre et al.,
Scientific Reports, 2017 drift diffusion
n current (electrons) J(2) = e n(2)p, E(z) + e Dnj—: (ren:: nOtfa:ion
eioraqg e
for g th
peurrent  (holes) Jp(2) = e p(2) pt, Ez) — e D, Z_i elementary
— . ] charge)
Poisson’s equation Z_}j — _‘27‘2/ - _g[n(z) — p(2) + N2) — Ny(2)]
continuity eq. for n —1% = G(z) — R(2)
e z
. . ld]P(Z) o
continuity eq. for p R G(z) — R(2)

photo-generation rate

inc
o0 By, (?)
G2) = [ r " —dw

¢

recombination rate

R(Z) = Rrad (Z) + RAuger (Z) + RSRH (Z)

radiative recombination rate

Rrad (Z) :®Tl(z)p(z) — i’liz) f

Auger recombination rate

Ryuger (2) = Cn(2)(n(2)p(z) — 1) + Cp(2)(n(2)p(z) — n})

SRH recombination rate

n(z)p(z) — "1‘2

SRH

R z) =
SRH ( ) T;RH(V!(Z) + n; expl(E; — E)) | kpT]) + 7

(p(2) + nj expl(E; — E) | kpT])

surface recombination

S, p(n(z9p(zg) — 1)
Su(n(z9) + m) + Sp(p(zg) + my)

R surf (Zs) =

o IES| Institut d’Electronique et des Systémes
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Simulation codes

2]

&
Sentaurus 2D, 3D =
Atlas 20,30 9
CoBoGui 20,30 §
Quokka2 1D, 2D, 3D §
Quokka3 1D,2D,3D £
PC3D 3D 2
PC1D 1D g
I2E (+PC1D) 1D g
SCAPS 1D g
ADEPT 1D 8
OPV Lab 1D =
Setfos 1D g
QS Cell 1D '
SARAH (IBC) 1D, 2D §
WXAMPS 1D g
gpvdm 1D E

Mxcad

V4

Songetal.,
SOLMAT, 2022

S institut
d'électronique

Parola et al., SOLMAT, 2019

Poisson-Drift-Diffusion (PDD) model



https://doi.org/10.1016/j.solmat.2021.111556
https://doi.org/10.1016/j.solmat.2021.111556
https://www.nature.com/articles/s41598-017-15996-0
https://www.nature.com/articles/s41598-017-15996-0
http://www.ies.univ-montp2.fr/edr/macsee/index.php/modelisations/2-non-categorise/80-modelisation-de-cellules-photovoltaiques
https://www.pvlighthouse.com.au/simulation-programs
https://doi.org/10.1016/j.solmat.2019.110042
https://www.wiley.com/en-ie/Physics+of+Semiconductor+Devices,+4th+Edition-p-9781119429111
https://www.wiley.com/en-ie/Physics+of+Semiconductor+Devices,+4th+Edition-p-9781119429111
https://www.wiley.com/en-ie/Physics+of+Semiconductor+Devices,+4th+Edition-p-9781119429111

Modelling and simulation — Elec
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The |OW_injecti0n approximation Green, book, 1982 Song et al., SOLMAT, 2022

« concentration of photogenerated carriers is much lower than the doping

» electric field and recombination independent of the e-h pair generation rate
An(z) < |ocal excess of minority carriers Ap(Z)

« local recombination rate R(n) =
Tp+— uniform carrier lifetime Tp

, 2 linear (diffusion of e in the p-region, of h in the n-region)
~ _ non-coupled differential equations

D d*An(z) 4 G(z)- An(z) _

0
T dz? T

n

D dzAP(Z)JrG(Z)_ Ap(z) _ g

P dZZ

Tp

Diffusion Generation Recombination

Minority carriers @ electrons 7V

\ O holes
ed Minority Carrier Separation (MCS) model
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https://doi.org/10.1016/j.solmat.2021.111556
https://scholar.google.fr/citations?view_op=view_citation&hl=fr&user=roS0_Z0AAAAJ&citation_for_view=roS0_Z0AAAAJ:u-x6o8ySG0sC

Modelling and simulation — Coup
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d'électronique Luminescence an

In-band photon recycling

external

luminescence emitter

DeSutter et al., PR Applied, 2017

o TPV cell

E>Eg G R, G R, R, R, G
Generation internal luminescence
Radiative ~ _ internal generalized Planck radiation law
1 Recombination luminescence 4 Warfel, JPCSSP, 1982
Single-pass /
Radiation transfer — A - : o= |
. Define system and set i .' ate M oouatio _..._. " % ..-..'ll.':..'o..
electrical transport it ] :
cou pl | ng Iterative FE‘ P' DD
/ \ Poisson-Drift-Diffusion (PDD) model
; Iterative solution obtained
Fluctuational Electrodynamics (FE) < o G ey Callahan et al., PR Applied, 2021
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https://doi.org/10.1103/PhysRevApplied.8.014030
http://dx.doi.org/10.1103/PhysRevApplied.15.054035
https://iopscience.iop.org/article/10.1088/0022-3719/15/18/012/meta
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Modelling and simulation — Cou

Luminescence an

nique

Impact of evanescent modes on

external luminescence

external|luminescence
/ total recombination

_field

effects

1 T
/ @)
I3 e
radiative :
H 1+ L ~
limit 10 S
. -
=
Rad
----Rad + Auger
10% -+ --- Rad + Auger + SRH E
10° . . .
10 200 400 600 800
d (nm)
FE 0451 . —Rad b
+ ----Rad + Auger
— R Rad + Auger + SRH
DB = --—--Radideal _ _____
c040p el T oo d
=
models
0.35 - B
0.30 L L L
10 200 400 600 800
d (nm)
FIG. 6.

1000

(a) Cell external luminescence efficiency (#y) and

(b) open-circuit voltage (V). as a function of the gap thickness
(d) for the case of the Si emitter, when only radiative (Rad),
intrinsic (Rad 4+ Auger), and all (Rad + Auger 4+ SRH) recom-
bination processes are considered. The open-circuit voltage in the
ideal case of the radiative limit with no luminescence towards the
substrate (Rad ideal) is plotted in panel (b).

DeSutter et al., PR Applied, 2017
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Impact of the coupling

iterative (FE + PDD) models

Callahan et al., PR Applied, 2021

(a) 300+

200[

100}

b) 100 e
O o ]

50 -

15

10

Current Density (A cm™)

1.5

1.0

0.5

0.0l it

“,"\ 0 + :

§ [ [100m

=

2 "N
= 5l \ i
C W
qJ W
a h
—

[}

; L

g o

0.5 \ 4

0.0lnt

0.1

PRI S S S S ST S S R
02 03 04

Voltage (V)

www.ies.univ-montp2.fr

05

02 03 04 05 06
Voltage (V)

0.6 0.1

In the (very) near field!



http://dx.doi.org/10.1103/PhysRevApplied.15.054035
https://doi.org/10.1103/PhysRevApplied.8.014030

Research pathways and modelli
> l'institut

d'électronique Contacts and qua

Back Contacts

Airbridge Patterned Dielectric Interdigitated
b b
p-Ge “IBC”
. Codwedbonding p+ n* +n+ TPV cell
Air bridge g

Reflector ™ Loss gu w I

! 1 - .
Fan et al., Nature, 2020 Arulanandam et al., SOLMAT, 2022 Jimenéz et al., SOLMAT, 2022

1

front contact grid

2D — 3D radiation modeling @
e.g. RCWA calculations in Arulanandam et al., IEEE PVSC, 2021 field field

E Resistive losses
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https://www.nature.com/articles/s41586-020-2717-7
https://www.sciencedirect.com/science/article/abs/pii/S092702482100581X
https://doi.org/10.1016/j.solmat.2021.111463
https://ieeexplore.ieee.org/document/9518396

Research pathways and modelli
> l'institut o
d'électronique Resistive a

a New structures to | the resistive losses and the | =l eics

| I (current) | R; (series resistance) Interdigitated Back
Contact (IBC) cells

a)

3y
Verlinden, book chapter, 2016

/A
{L 11 : ﬂ ﬂ Jimenéz et al.,

TPV SOLMAT, 2022

Multi-junction cells Micro cells

Rey-Stolle et al., book chapter, 2016

Monolithic
Interconnected

Transparent Conducting ]

TN [Electrode (TCE)
sizgllles (94 PV magazine, 2021 e atlal

Siopa et al.
Datas & Linares, RSER, 2017 Sci. Reports, 2020 NEEIRICEM | TPV
Near-field |RLaY ———— ' :

light

I R

Karalis & Joannopoulos,

Vaillon et al., .
Optics Express, 2019 Sci. Reports, 2017

Metal grid

Karalis & Joannopoulos,

Cakiroglu et al., Proc. of SPIE, 2019
SOLMAT. 2019

i o & @

Adapted modelling of radiation transfer and electrical transport
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http://dx.doi.org/10.1016/j.rser.2017.01.071
https://www.pv-magazine.com/2021/05/12/micro-iii-v-solar-cell-with-33-8-efficiency/
https://onlinelibrary.wiley.com/doi/abs/10.1002/9781118755655.ch02
https://opg.optica.org/oe/abstract.cfm?uri=oe-27-4-a11
https://opg.optica.org/oe/abstract.cfm?uri=oe-27-4-a11
https://doi.org/10.1016/j.solmat.2019.110190
https://doi.org/10.1016/j.solmat.2019.110190
https://www.nature.com/articles/s41598-020-71717-0#Sec1
https://www.nature.com/articles/s41598-020-71717-0#Sec1
https://www.nature.com/articles/s41598-017-13540-8
https://www.nature.com/articles/s41598-017-13540-8
https://doi.org/10.1117/12.2529736
https://doi.org/10.1117/12.2529736
https://onlinelibrary.wiley.com/doi/abs/10.1002/9781118927496.ch10
https://doi.org/10.1016/j.solmat.2021.111463
https://doi.org/10.1016/j.solmat.2021.111463

Research pathways and modelli
Q .
jistitut Hybrid thermionic-thermoph

‘électronique
G | resistive and shading losses Jelisl 1 th
AN
*

ermal energy conversion

®=25eV T_.=2000K

E
R =04mQ

lead

-
(&)
o

100

Power density (W/cm®)

(S
o

Back reflector (Au) |_

100

Distance, d (um)

E 3
Far Near Datas & Vaillon, .
field 1ll3i=e0  Datas, APL, 2016 field ] Theo. Nano Eneray. 2019 Liao et al., APL, 2019 g

Far
Bellucci et al., Adv. Energy Mater., 2022 Bellucci et al., SOLMAT, 2022

1

Finding materials and structures that allow both conversions in an optimal way

/_
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https://doi.org/10.1016/j.nanoen.2019.04.039
https://doi.org/10.1016/j.nanoen.2019.04.039
https://doi.org/10.1002/aenm.202200357
https://doi.org/10.1063/1.5086778
https://doi.org/10.1016/j.solmat.2022.111588
http://dx.doi.org/10.1063/1.4945712

Research pathways and model
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li
oW

G TPV at low emitter temperatures? IR photodetectors and lasers | =» | TPV cells

Example of InAs/GaSb T2SL (E, = 0.2-0.3 eV)

Rationale e Raa ¢ Barrier
L2p ] @ )
E,(eV) @300K | [~0.75 | CHON N N W A oo I -
- 3 A A NN / \ /] i Ehdad — " BiasV
InGaAs InAs InSb Zoep ][] E, S ]
5.0 ] T T g & & T 1 T T 1 ] E 0.4 r a a _‘ h®*—
4.5+ e 0.2+
{,1200 °C ] \/ \/ \/ \/
4.0- . wf VLV L ,EML L S “barriode”

! !
0 5

E
w = ]
o
5 £ 3.5 ~J = loDisl;ISJce(n);g) w0 H Ph D d rt t 2020
a5 S ] mini ng, Ph.D. di ion,
82 a0] S ! Band structure: minibands ~ —42Nd ssertalio
E 2 1 3 1
@ = 254 s .
- 5 ] Kapsrran Electron W
% E C T Absorb Ratver Barrier %Phomns |nterband

5 1 Absorber Electron
:,.J' "3 1.5 4 842 °C <Elecn‘ou flow E;:::’:xb;:w ' Barrier Cascade

© o g ! -

g 1.0 Ee-l-l-l-l Ees EiElE| : Absorber PV Structure

i L] L] [SAA momnmEme i Electron flow

- - T u ﬁ, oo.: E —
0.5+ - [4. E " ] E En T K
W cm2 Hole flow = e L] L A Yang et al.,
= Py S Hole IsvGasos SN OO 10y o SOLMAT, 2022
0 1 2 3 4 5 6 7 8 9 10 Barrier Hole Tnas’sa Hole flow *

wavelength (um) B

1

arrier

a cascade

\ ) Hole InAs/GaShb SL . .
stage ~ Barrier Review article

Simulations to optimize materials and structures

-
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https://doi.org/10.1016/j.solmat.2022.111636
https://doi.org/10.1016/j.solmat.2022.111636
https://anr.fr/Project-ANR-21-CE50-0018
https://shareok.org/handle/11244/324320
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* Heat source
r 3
GaAs-based
P light-emitting d|odt—i_w% Uiep, JLep
p-type
Zrad
n-type
Zpy ) Upy, Jpv
GaAs photovoltaic cell
L J

Heat sink

g
s
3
: Emitting
/19" window A
6 5 10 0 5 10
A [um] A [pm]

Chapuis et al., Photoniques, 2020

Research pathways and modelli

TPV at very low emitter temperatures?

Ther

Concept proposed by
Harder & Green, IOP SST, 2003

T, = 600 K

* ()
a 9 z 1
g § : é g
£, £ . =
s
& =
2 S ' . . ! 2060 o™ TN eeesssenet ]
S e X : ‘ - - =TPX: 800K | § ;.\’ ‘\, -------- —TPX: 100%
g 100t \s\; ‘ === TPX: 600K : G N e g = TPX: 99.9%
P 5 5 “\ N | e TPX: 400K . E 045, oo \ - TPX: 90%
= AN : ——TPV: 1000K A v «xa TPX: 0%
2 L — —TPV: 800K | - X ——TPV: 100%
2 W 4 ¥ ===TPV: 600K | 027 v - = TPV: 99.9% -
o (N 1O sssasns TPV: 400K ' \, \ =-==TPV: 90%
N '\ ) ‘\ ;S 2 1 TPV: 0%
10 d% N . Y S o o e S . N
05 1 15 2 25 I 3 0.5 1 15 2
Eg (eV) Bandgap (eV)
Te BSR reflectivity

% Sadi et al., SOLMAT, 2022

Far
Near

=i

* Legendre & Chapuis, SOLMAT, 2022

Modelling to find the optimum materials and structures
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https://iopscience.iop.org/article/10.1088/0268-1242/18/5/319/meta
https://doi.org/10.1016/j.solmat.2022.111635
https://doi.org/10.1016/j.solmat.2022.111594
https://www.photoniques.com/articles/photon/abs/2020/06/photon2020105p37/photon2020105p37.html
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= 40% QuBETl- 11.2% e 1 system efficiency?

Thermal losses

Example of a solar TPV system
@ Reflected (d)
10.7 W (d) =AW

Re-emitted
/9.6 W (c) 1.7W Sides + Inactive
Absorber : . | 13w
79W Supports
0.7W
Emitter ’

59WwW Cavity

— 05w

< Eg > Eg -

Power out

0.34W

PV cell

50w
Lenert et al., Nature Enerqy, 2014

Research pathways and modelli

Thermal manageme

|deal regenerative

Omair et al., PNAS, 2019

Optical CaVitieS (a) Concentrated solar

Concentrating 0 energy
o @

&V =Y 4 Ll - Py Feun

Reflector

P

| Kohivama etal., Talebzadeh et al.,
Zhou et al., Enerqgies, 2016  Optics Express, 2020 IEEE JPV, 2022

!
Modelling of the full system from P, to P,
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INSIS — Project team « TREE »

Q GDR NAME & TAMARYS

®
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Figure 7. Electric output power density as a function of the hot-side
temperature assuming a cold-side temperature of 300K in case of
direct heat radiation conversion (TPV) and a thermoelectric energy
conversion (TE). Legend: (1): TE conversion: solid line: total heat
transfer coefficient Koo = 250 W m~2 K~!, dashed line: K, = 5

W m~2 K~ !; (2): TPV with heat transfer coefficient Keon = 500 W
m 2 K~!, dash-dot line: without sub-bandgap radiation, dash-dot-
dot line: with sub-bandgap radiation; (3) NF-TPV with K., = 500
W m~2 K~': dash-dot line: without sub-bandgap radiation, dotted

L] line: with sub-bandgap radiation; solid squares: experimental data
. *  exp TPV 0 for TE, taken from [52-54, 57], solid stars: experimental data for

& / S 8 ’ 3 TPV from [33, 41, 58]; solid pentagon: experimental data for
'l '/ v theor. TPV 3 NE-TPV, extracted from [36]; open stars: theoretical predictions

10" & ’-:-‘ / * exp. NF-TPV > for TPV from [41, 55].
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Figure 5. Different efficiency limits as a function of hot-side
temperature, assuming a cold-side temperature of 300 K. (1):
Novikov—Curzon—-Ahlborn (NCA) efficiency (equation (2)); (2):
TE efficiency under maximum power transfer for ZT = 1; (3):
maximum TE-efficiency for ZT = 1; (4): conventional radiative
detailed balance (RDB) limit, if non-radiative transitions would
be negligible, (5): RDB limit, while E, > 0.5 eV in order to
prevent non-radiative transitions; (6): RDB —limit, taking cell
heating into account by a heat transfer coefficient of Ko, = 500
W m~—2 K~ !; (7): RDB limit with cell heating but suppressed sub-
bandgap radiation. (8): RDB limit for NF-TPV with cell heating
and sub-bandgap radiation, (9): RDB limit for NF-TPV with cell
heating but without sub-bandgap emission. For NF-TPV a 40-fold
enhanced black body radiation was assumed. Data from literature
are added for comparison. These are: solid squares: experimental
data of TEGs, taken from [52-54, 57], solid stars: experimental
data of TPV cells, taken from [33, 41, 58], open stars: simulated
TPV cells with photonic engineered/spectral shaped emitter
materials [41, 42, 55].
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