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Macroscopic View on Thermoelectric Effects

• 1794: Thermoelectric effect first evidenced by Volta
• 1822– 1851: Three effects evidenced

1822: Seebeck effect 1834: Peltier effect 1851: Thomson effect

𝑆 =
∆𝑉
∆𝑇 Π =

𝑄
𝐼 𝜏 =

𝑑𝑄
𝐼∆𝑇
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Figure of Merit in Thermoelectricity
• Materials Properties to take into account
• Electronic properties: 

• Seebeck coefficient: S (𝜇V K-1)
• Electrical conductivity 𝜎 (𝛺-1 m-1)
• Electrons thermal conductivity 𝜅e (W m-1 K-1)

• Lattice property:
• Lattice thermal conductivity (phonons): 𝜅L (W m-1 K-1)

• Properties gathered in one expression: the figure of merit

𝑍𝑇 =
𝑆%𝜎

𝜅& + 𝜅'
×𝑇

(Z in K-1, ZT adimensional)
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Figure of Merit in Thermoelectricity

𝑍𝑇 =
𝑆%𝜎

𝜅& + 𝜅'
×𝑇

Ideally: ZT should be as large as possible, hence
• Large Seebeck coefficient and electrical conductivity
• Low thermal conductivities

BUT: things are not that easy and TE properties are interrelated:
𝑆 ∝ *1 𝜎
𝜎 ∝ 𝜅&
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Electronic Properties: S, 𝜎 and 𝜅e

• The carriers concentration
Pisarenko-type of plot:

• The band structure ⟹ influence of strains, resonant levels
• Carriers scatterers: e.g., impurities, defects

Best power factor S2𝜎 and 
ZT for moderately doped SC

Very dependent on:
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Microscopic View of The Electrical Conductivity

• We take the view of the Landauer approach (≠ the Boltzmann one)
• Start with the electrical conductivity

10

Difference 𝑓! − 𝑓" due to difference in chemical potentials
Current is proportional to:
• So: 𝑓! − 𝑓" ≈ − /#$!

#% 𝑞∆𝑉
• Transmission coefficient (0 ≤ T ≤ 1 semi-classical approach)
• Number of channels (prop. to carriers velocity x DOS)
• Difference in Fermi functions caused by a difference in the

Fermi levels (electrochemical potential)

• A device of length L is connected to two contacts
• The one on the left is grounded
• The current flow from right to left

Expressions derived in https://www.youtube.com/watch?v=d5WQS0kZwZU

https://www.youtube.com/watch?v=d5WQS0kZwZU


Microscopic View of The Electrical Conductivity
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• Expressions for 𝐽 and 𝜎:

• 𝐹( is the quasi-Fermi level that varies across the device (or material) 
due to the applied voltage (𝐹(/𝑞 = electrochemical potential)
• 𝜆(𝐸) is the mean-free path of electrons with energy E, A is the cross 

section
• 𝑓) is the Fermi-Dirac distribution at equilibrium: approximate 𝑓* − 𝑓%

𝐽1 = 𝜎2
𝑑 𝐹2/𝑞
𝑑𝑥 → 𝜎2 =

2𝑞3

ℎ
,𝜆(𝐸)

𝑀(𝐸)
𝐴

−
𝜕𝑓4
𝜕𝐸

𝑑𝐸



Microscopic View of The Electrical Conductivity

Recast the electrical conductivity expression as

𝜎 = 9𝜎+(𝐸)𝑑𝐸

with:

𝜎+ = %,!

-
𝜆 𝐸 . /

0
− 12"

1/
= 𝑞%Ξ(𝐸) − 12"

1/
the differential electrical

conductivity, and

Ξ 𝐸 = %
-
. /
0
𝜆(𝐸) called the transport function

The transport function is hence prop. to the mean-free path of the 
electrons and to the number of conduction channels

12For the transport function see Mahan & Sofo, PNAS, 1996, 93, 7436-7439: ``The best thermoelectric’’



Microscopic View of The Electrical Conductivity

At what energy does the current flow? In the conduction band, but 
where? 

Dictated by the Fermi Window
• For a non-degenerate SC: EF << EJ

Only the tail of the FW is responsible for the
conduction that occurs close to the bottom of 
the CB
• For a degenerate SC: EF ≈ EJ

The current is flowing near the Fermi energy
where the FW is. This occurs for metal of
heavily doped SC
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Microscopic View of The Seebeck Coefficient

• Recall: the Seebeck coefficient is responsible for the current to flow 
when a temperature difference is applied
• Seebeck coefficient also called the thermopower
• Temperature difference causes electrons to flow because of a 

difference between the Fermi functions of the two contacts

𝐼 =
2𝑞
ℎ
9𝑇 𝐸 𝑀(𝐸) 𝑓* 𝐸 − 𝑓%(𝐸) 𝑑𝐸

But now the difference 𝑓* − 𝑓% is caused by a difference in 
temperatures

So, now: 𝑓* − 𝑓% ≈ − 12"
13
∆𝑇 ∝ − 12"

1/
∆𝑇

14
(See: https://www.youtube.com/watch?v=5iTehoVGYeE)

https://www.youtube.com/watch?v=5iTehoVGYeE


Microscopic View of The Seebeck Coefficient

The electrical current becomes

𝐼 = − 9
𝐸 − 𝐸4
𝑞𝑇

𝜎+ 𝐸 𝑑𝐸 ∆𝑇 = (𝑆𝐺)∆𝑇

𝐽5 = −𝑆𝜎 63
65
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𝑆𝜎 = −9
𝐸 − 𝐸4
𝑞𝑇

𝜎+ 𝐸 𝑑𝐸 → 𝑆 = −
∫ 𝐸 − 𝐸4

𝑞𝑇 𝜎+ 𝐸 𝑑𝐸

∫𝜎+ 𝐸 𝑑𝐸



Microscopic View of The Seebeck Coefficient

• What is the sign of the Seebeck coefficient?
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• We are dealing with a n-type SC

• Hot side on the right / cool side on the left

• Electrons diffuse from hot side to cool side

• A positive voltage appears to drag the electrons back to counteract the 

diffusion and give a zero current under open circuit voltage (𝑉&')

• Because 𝑉&' is −𝑆∆𝑇 (Seebeck coefficient) we conclude

That S is negative for n-type SC



Microscopic View of The Seebeck Coefficient

Simple meaning and expression of the Seebeck coefficient
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• 𝐸(: Average energy at which current flows 

near the bottom of the conduction band 

in a non-degenerate n-type SC

• In OC conditions: 𝑓! = 𝑓"
• 𝑉&' = −𝑆∆𝑇

𝑉&' =
𝐸( − 𝐸)
−𝑞𝑇!

∆𝑇 and 𝑆 = −
∫ 𝐸 − 𝐸)

𝑞𝑇 𝜎* 𝐸 𝑑𝐸

∫𝜎* 𝐸 𝑑𝐸

Average expression: %+%"
,-

Hence:
The Seebeck coefficient is related to the average energy at which the current flows

with respect to the Fermi energy



Seebeck coefficient Versus Electrical Conductivity
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• If the Fermi level approaches the level at which

conduction occurs, S decreases

• If the ‘’gap’’ is large, S is large too

• When the Fermi level gets close to the level at

which conduction occurs, 𝜎 increases

• If the ‘’gap’’ is small, 𝜎 is large
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How to Calculate These Coefficients?

The TE coefficients = transport coefficients hence
Need for a transport equation

Boltzmann transport equation

20

If no need to account for strong e-e quantum correlation?

Mean-field approach (e.g. DFT) +
Semi-classical considerations +
Relaxation time approximation



𝑑𝑓
𝑑𝑡

= 0

𝑓: the distribution of electrons (Fermi-Dirac) à electronic props.
or phonons (Bose-Einstein) à thermal-related props.

𝑓 is 6-dimensional function that evolves with time: 𝑓(𝑟, 𝑝, 𝑡)
𝜕𝑓
𝜕𝑡
+ 𝑣⃗ M ∇7𝑓 + 𝐹& M ∇8𝑓 = 0

(no collision processes accounted for here)

The Boltzmann Transport Equation

21



The Boltzmann Transport Equation

If one accounts for collisions:
𝜕𝑓
𝜕𝑡 + 𝑣⃗ ' ∇!𝑓 + 𝐹" ' ∇#𝑓 = +

𝑑𝑓
𝑑𝑡 $%&&

= -𝐶𝑓 = 𝐺'( − 𝐺%)*

-𝐶𝑓 = −
𝑓 𝑝 − 𝑓+ 𝑝

𝜏,
= −

𝛿𝑓
𝜏,

with 𝛿𝑓 a small variation of the distribution function with respect to 
equilibrium (𝑓+(𝑝)) and 𝜏, the scattering time of the carriers.
⟹Relaxation Time Approximation.

1) RTA not valid in general! Justified when isotropic and/or elastic scatt.
2) Widely used in practice, though.
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Tools to Calculate Thermoelectric Properties

• Electronic structures ⟹ quantum ab initio approaches
• Electronic TE properties: Seebeck coefficient, electrical and electronic

thermal conductivities and
• Lattice TE property: thermal conductivity

⟹ at least apply semi-classical approaches to the BTE

24



Electronic Structure Calculation

• Any code can do the job: VASP, Quantum Espresso, Wien2k, SIESTA, CP2K,…

As far as their output data
can be processed by other
programs: e.g. BoltzTraP, 
phonopy, phono3py, etc.
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Electronic Structure Calculation

Reminder on how to solve the 
Kohn-Sham equations of DFT →

Allows one to obtain:
• Electrons energies
• orbitals
for a set of k-points spread 
over the Brillouin zone

26



Convergence With k-Points And Cutoff Energy

• K-points grid: used to sample the Brillouin zone
Small lattice → large reciprocal lattice ⟹ lot of k-points needed

• Cutoff energy: defines the plane wave basis set size

27



How To Solve The Boltzmann Equation

𝜕𝑓
𝜕𝑡
+ 𝑣⃗ ' ∇!𝑓 + 𝐹" ' ∇#𝑓 = −

𝛿𝑓
𝜏,

Linearize the equation: analytically develop expressions for the transport 

coefficients expressions (RTA) and calculate them numerically

For electronic coefficients → BoltzTraP(2) Code (Boltzmann Transport Program)

(GNU, https://www.imc.tuwien.ac.at/index.php?id=21094)

28
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Theory Behind BoltzTraP

Linearization of the Boltzmann equation
𝜕𝑓
𝜕𝑡
+ 𝑣⃗ ' ∇!𝑓 + 𝐹" ' ∇#𝑓 = −

𝛿𝑓
𝜏,

𝑓 = 𝑓 + 𝐸 + 𝑓 - 𝐸 =
1

1 + e
./0
12

+ 𝑓(-)(𝐸)

Recall that 𝐸 = 𝜖(𝑘)

𝜕𝑓(8)

𝜕𝑡
+ 𝑣

𝐸 − 𝜇
𝑇

∇:𝑇 + ∇:𝜇 − 𝑞ℰ −
𝜕𝑓(4)

𝜕𝜇
+
𝑞
ℏ𝑐

𝑣×𝐵 ∇;𝑓(8) = −
𝑓(8)

𝜏<
Note: 𝜇 is the (electro-)chemical potential

𝜏< depends on 𝑘
29



Theory Behind BoltzTraP

• Assume 𝜖! =
ℏ.!.

#$∗ and 𝑣! =
ℏ!
$∗

𝑓 % = 𝜏 𝜖 𝑣 𝑞ℇ − ∇𝜇 −
𝜖 − 𝜇
𝑇 ∇𝑇 −

𝜕𝑓(')

𝜕𝜖!
Kinetic coefficient:

𝐾) =
1
3
0𝑣# 𝜖 − 𝜇 )𝑛(𝜖)𝜏(𝜖)

𝜕𝑓(')

𝜕𝜖
dϵ , 𝑝 = 0,1,2

Electrical current:

𝐽 = 𝐾' 𝑞ℇ − ∇𝜇 − 𝐾%
∇𝑇
𝑇

Electronic thermal current:

𝐽* = 𝐾% 𝑞ℇ − ∇𝜇 − 𝐾#
∇𝑇
𝑇
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Theory Behind BoltzTraP

• Kinetic coefficient:

𝐾) =
1
3
0𝑣# 𝜖 − 𝜇 )𝑛(𝜖)𝜏(𝜖)

𝜕𝑓(')

𝜕𝜖 dϵ , 𝑝 = 0,1,2

• Electrical conductivity:
𝜎 = 𝑞#𝐾'

• Seebeck coefficient:

𝑆 =
1
𝑞𝑇

𝐾%
𝐾'

• Electronic thermal conductivity:

𝜅+ =
𝐾'𝐾# − 𝐾%#

𝐾'𝑇
Note: 𝜎, 𝑆 and 𝜅+ are tensors, so BoltzTraP outputs tensors
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• Velocity vector:

𝑣9 𝑖, 𝑘 =
1
ℏ
𝜕𝜖:;
𝜕𝑘9

• Conductivity tensor expressions:
𝜎9< 𝑖, 𝑘 = 𝑞%𝜏:;𝑣9 𝑖, 𝑘 𝑣< 𝑖, 𝑘

𝜎9< 𝜖 =
1
𝑁;

U𝜎9< 𝑖, 𝑘
𝜕(𝜖 − 𝜖:;)

𝜕𝜖

𝜎9< 𝑇, 𝜇 =
1
Ω
9𝜎9< 𝜖 −

𝜕𝑓(𝑇, 𝜖)
𝜕𝜖

𝑑𝜖

Practical Equations Calculated in BoltzTraP
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A Note On The Convergence With k-Point Grids

How many k-points should I use for a transport calculation? 
• According to BoltzTraP2 authors: ``a lot’’
• As a rule of thumb: convergence tests should start at 16x106 k-points in the IBZ

Test on Pb2Sb2Te5: 

33

Hexagonal structure
4.23 x 4.23 x 16.92 Å



A Note On The Convergence With k-Point Grids
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0

1x1011

2x1011

3x1011

4x1011

5x1011

6x1011

7x1011

8x1011

0.3 0.35 0.4 0.45 0.5

P
F/
� 0
(W

m
-1
K
-1
s-
1 )

E (eV)

16x16x4
18x18x4
20x20x4
22x22x4
24x24x4
26x26x4
28x28x4
30x30x4
32x32x4
34x34x6
36x36x6
38x38x6
40x40x6
44x44x8
46x46x8
48x48x8

0.3 0.35 0.4 0.45 0.5

E (eV)

13x13x1
13x13x3
15x15x3
17x17x3
19x19x3
21x21x3
23x23x3
25x25x3
27x27x3
29x29x3
31x31x3
33x33x5
35x35x5
37x37x5
39x39x5
41x41x5
43x43x7
45x45x7
47x47x7

• Rather slow convergence with

k-point grid

• Same convergence rate with both

odd and even grid

• Faster calculations with odd grid

than with even one

Comments

Investigation performed by J. Tian, 
PhD student
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A Simple Silicide Compound: Mg2Si

36

References:

Studies by H. Balout et al.

• J. Mol. Model., 2017 (23) 130
• Eur. Phys. J. B, 2015 (88) 209
• J. Electron. Mater., 2014 (43) 3801
• Intermetallics, 2014 (50) 8
• J. Electron. Mater., 2013 (42) 3458



Band Structure of Mg2Si
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• Calculated with the GGA-PBE 

functional

• Exp. ∼ 0.7-0.8 eV



Transport Coefficients of Bulk n-type Mg2Si
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• S is high for lightly doped Mg2Si

• 𝜎 is high for heavily doped Mg2Si

Comments

• S and PF decrease as T increases

• 𝜎 not much sensitive to T

𝜎 and PF in units of per second because

𝜏0 is unknown

Note



Transport Coefficients of Bulk p-type Mg2Si
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Comments

Same observations as for n-type doping but

• Seebeck coefficient slightly larger for the

same T and doping: 500 𝜇V/K at 300 K 

and 1018 h/cm3 instead of 400 𝜇V/K

• 𝜎 slightly smaller for the same T

and doping



Transport Coefficients w.r.t. Temperature
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Mott relation of thermopower

𝑆 =
𝜋"

3
𝑘"𝑇
𝑞

1
𝜎%

C
𝑑𝜎%
𝑑𝐸 %1%"

where 𝜎% is the transport function

𝜎% =
𝑞"

3 𝜏 𝐸 𝑣" 𝐸 𝑁(𝐸)



Can We Improve The Thermopower?

From the Mott formula:

𝑆 = =!

>
;!3
,

*
?#

X6?#
6/ /@/$

and 𝜎/ =
,!

>
𝜏 𝐸 𝑣% 𝐸 𝑁(𝐸)

𝑑𝜎/
𝑑𝐸

≈
𝑑𝑁(𝐸)
𝑑𝐸

⟹ if we can make the DOS increase subtantially near the Fermi level, 
then S may increase notably
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Can We Improve The Thermopower?

1) Design of low-dimensional materials

2) Merge bands near the Fermi level by applying strains
3) Introduce foreign atoms to create resonant levels

42

From: Dresselhaus et al., Adv. Mater. 2007, 19, 1-12

Examples with Mg2Si and HMS



Band Engineering in Mg2Si: Band Structures
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Comments

• Only the (110)-oriented thin film is SC

• Flat bands localized in the conduction

bands of the (110) film

• Energy gap slightly larger than that of the bulk

• Energy gap evolves with the number of 

layers



Band Engineering in Mg2Si: Electrical Conductivity
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Band Engineering in Mg2Si: Seebeck Coefficient
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Band Engineering in Mg2Si: Power Factor
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Conclusions

• Both S and 𝜎 can be improved

• Idea of decoupling S and 𝜎
through band engineering

• S is highest for the thinnest film

• Best performance at low doping

and moderate T



Band Engineering in Mg2Si: bands Convergence
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Band Engineering in Mg2Si: Electrical Conductivity
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Band Engineering in Mg2Si: Seebeck Coefficient
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Band Engineering in Mg2Si: Power factor
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Band Engineering: Resonant Levels

What is a resonant level?
Energy states located at or near EF in the DOS due to impurities
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From:

J. P. Heremans et al.,

Energy Environ. Sci., 2012, 5, 5510



Higher-Manganese Silicides

Higher Manganese Silicides
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MnSi1.72 – MnSi1.75

Homogeneity range

63.2 at.%Si – 63.6 at.%Si



Higher-Manganese Silicides
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Nowotny Chimney-ladder phases ( a ≈ 5.2 Å)

Mn4Si7 Mn11Si19 Mn15Si26 Mn27Si47
X (MnSix) 1.75 1.727 1.733 1.7407

C (Å) 17.45 48.13 65.55 117.9



Resonant levels in HMS
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Mn4Si7

Semiconductor

Mn11Si19

Degenerate p-type SC 

References:

Studies from A. Allam et al.

• J. Electron. Mater., 2014 (43) 761
• J. Alloy Compnd., 2014 (584) 279



Resonant levels in HMS

Density of states of Mn4Si7 HMS
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Resonant levels in HMS

Substitutions of 1.1at.% Ga, Na, In and Tl
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Comments

• Mn4Si7 is p-doped

• Large peak appears near EF

• Peak caused by d-orbitals for In and Tl, 

mixed p/d-orbitals for Ga and p-orbitals

for Na

• In the case of Na, EF is deep in the

valence band



Resonant levels in HMS

• Seebeck coefficient of substituted Mn4Si7

57

Comments

• None of the candidates yield

better Seebeck coefficient

• Ge/Sn: isoelectronic with Si

• Re: isoelectronic with Mn

• Cu: yields a metallic state

Why? F
Peak width should be as small as possible

The background DOS should be as small as possible
In SC, for complex reasons, the states involved should be s or p

See J. P. Heremans et al., Energy Environ. Sci., 
2012, 5, 5510



Resonant levels in HMS

Electrical conductivity of substituted Mn4Si7
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Comments

• Conduction by holes where

the Fermi level is, so high 

electrical conductivity of

Ga-, Na-, In- and Tl-substitu-

ted Mn4Si7
• Metallic compounds have 

inherently high electrical

conductivity (Cu-, Fe-substi-

tuted Mn4Si7)



Resonant levels in HMS

Power factor of substituted Mn4Si7
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Power factor improved due to
high electrical conductivity

Comment

Conclusion

• Electronic thermoelectric properties of HMS could be improved by substitutions of 
impurities

• Not that clear that these impurities induce resonant levels in the compound
• Resonant levels are easy to identify in theoretical toy-models, but not that easy in ``real ’’ 

compounds



Conclusions

• The Landauer approach is well suited to understand the physics of the 
phenomena (Seebeck coefficient, Peltier effect, electrical conductivity and 
electronic thermal conductivity)
• The Boltzmann approach is well suited to solve problems numerically, in 

particular when one wants to include magnetic field
• {DFT + BTE} approach is interesting as it yields adequate preliminary results

but there are weaknesses such as the lack of the treatment of collisions 
and of the relaxation time. To go beyond, Monte Carlo is more appropriate
• Transport is quite demanding in terms of the quality of the DFT 

calculations, especially regarding the thin sampling of the Brillouin zone.
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