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-Urgent need to covert waste heat in recoverable form of energy   

-The ideal thermoelectric material is a good electronic conductor, 
but a poor thermal conductor

Electricity

Waste heat recovery and thermoelectricity



Figure of merit

Thermoelectricity and thermal conductivity
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𝑆2σ
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Two main strategies : 

-boundary scattering (nanowires)

-interface scattering (superlattices)

Λ > 300𝑛𝑚Si @300 K :

Strategies to reduce the thermal conductivity

Nanostructured materials

diffusiveDiffusive regime 

Ballistic regime 



Thermal conductivity

Y. Touloukian, Thermophysical properties of matter

Semi conductors
(phonons)

Metals
(electrons)

Polymers &
Amorphous  
materials

(diffusons)



Thermal conductivity

Nanoscale thermal transport II, Appl. Phys. Rev., 2014

Suspended graphene

SLG/FLG on SiO2
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Dynamics of a monoatomic chain

𝑚
𝑑2𝑢𝑛
𝑑𝑡2

= 𝐶 𝑢𝑛+1 + 𝑢𝑛−1 − 2u𝑛Equations of motion :

𝑢𝑛 𝑡 = 𝑞𝑘exp 𝑖 𝑘𝑛𝑎 − ω 𝑘 𝑡

ω 𝑘 =
4C

𝑚

Τ1 2

∣ sin
𝑘𝑎

2
∣

Dispersion relation :

Solutions : 𝑘 =
2π𝑝

𝑁
𝑝𝑖𝑛𝑡𝑒𝑔𝑒𝑟

C

Group velocity

𝑣𝑔 𝑘 =
𝐶

𝑚

Τ1 2

𝑎cos
𝑘𝑎

2



Dynamics of a diatomic chain

Equations of motion :

𝑀
𝑑2𝑈𝑛
𝑑𝑡2

= −𝐶 𝑈𝑛 − 𝑢𝑛 − 𝑐 𝑈𝑛 − 𝑢𝑛−1

C c

𝑚
𝑑2𝑢𝑛
𝑑𝑡2

= −𝑐 𝑢𝑛 − 𝑈𝑛+1 − 𝐶 𝑢𝑛 − 𝑈𝑛



Three dimensional dispersion curve

𝐻 = 𝐻0 +
1

2
෍

𝑖,𝑗
Φ𝑖𝑗
αβ
𝑢𝑖
α𝑢𝑗

β α, β ∈ 𝑥, 𝑦, 𝑧

Harmonic force constants

𝑚𝑖

𝑑2𝑢𝑖
α

𝑑𝑡2
= −෍

𝑗
Φ𝑖𝑗
α,β

𝑢𝑗
β

𝐷𝑖𝑗
α,β

=
1

𝑚𝑖𝑚𝑗
Φ𝑖𝑗
αβDynamic matrix :

Harmonic Hamiltonian :

𝑢𝑖
α =

𝑄𝑘
𝑚𝑖

𝑒α 𝑘 exp 𝑖 𝑘 ⋅ 𝑟𝑖 −ω𝑡

𝐷αβ 𝑘 =෍
𝑗
𝐷𝑖𝑗
αβ
exp 𝑖𝑘 ⋅ 𝑟𝑗 − 𝑟𝑖

Equations of motion :

Plane waves solutions :

𝐷αβ 𝑘 𝑒β 𝑘 = ω2 𝑘 𝑒α 𝑘

Polarisation vector



Dispersion curves 

Longitudinal

Transverse

Gold (faced centered cubic) 

A. Alkurdi thesis



Dispersion relations for complex crystals

𝑢𝑖
α 𝑏 =

𝑄𝑘
𝑚𝑖

𝑒α 𝑘, 𝑏 exp 𝑖 𝑘 ⋅ 𝑟𝑖 𝑏 − ω𝑡

Eigenvalues :

෍
𝑏′
𝐷αβ 𝑘; 𝑏, 𝑏′ 𝑒β 𝑘, 𝑏′ = ω2 𝑘 𝑒α 𝑘, 𝑏

ω𝑠
2 𝑘 ; 𝑒α,𝑠 𝑘, 𝑏

Three dimensional crystal :  index s
Total = 3*p branches with p = number of atoms

in the primitive cell

3 acoustic modes
3*(p-1) optic modes

Eigenmodes :

vector defining the position in the primitive cell

𝑏



Dispersion curves 

Germanium (diamond) 

Silicon (diamond) 



Dispersion in complex crystals

Euchner et al., Phys. Rev. B 2012

BaGeNi clatrate
(Pailhès et al., ILM)



Phonon dispersion in graphene

E. Pop, V. Varshney and A.K. Roy, MRS Bull., 37 (2012) 1273

𝑔 ω =
ω

𝑣ϕ ω 𝑣𝑔 ω

2D material

Bending modes dominant at low q

Dispersion of the 
bending modes

𝜔~𝑞2
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Molecular dynamics

-> see Evelyne Martin’s talk 

Molecular dynamics : 𝑚
𝑑2𝑟𝑖
𝑑𝑡2

= −
𝜕Φ

𝜕𝑟𝑖

Φ =෍
𝑖<𝑗

𝑉2 𝑟𝑖𝑗 +෍
𝑖<𝑗<𝑘

𝑉3 𝑟𝑖 , 𝑟𝑗 , 𝑟𝑘

Interatomic potential :

+ thermal bath

Stillinger-Weber potential (Silicon) :



Thermal conductivity in MD 
(workshop MD part II)

Essentially, three methods :

1. the « direct » method

2. Green-Kubo method

Probe the fluctuations around equilibrium
of the energy flux vector

Apply a temperature gradient or energy flux
and calculate the conductivity with Fourier law

3. « approach to equilibrium »

Probe the relaxation of a temperature profile
-> see Evelyne Martin’s talk 



1. Thermal conductivity : the direct method

Steady state temperature profile

𝐽 = −λ
Δ𝑇

𝐿
Fourier law :

Heat sink

Heat source

Example Si/Ge

𝐿



Strong finite size effects !

« Bulk » thermal conductivity

Schelling, Phillpot, Keblinski, Phys. Rev. B (2002)
Selan et al. Phys. Rev. B 2014

1. Thermal conductivity : the direct method



II. Thermal conductivity :

Green-Kubo equilibrium simulations

λα,β =
1

𝑉𝑘𝐵𝑇
2න

0

+∞

𝐽α 𝑡 𝐽β 0 𝑑𝑡Green-Kubo formula :

Heat flux vector :

Ԧ𝐽 =෍
𝑖
𝐸𝑖 𝑣𝑖 +

1

2
෍

𝑖≠𝑗
𝑟𝑖𝑗 𝐹𝑖𝑗 ⋅ 𝑣𝑖 + 𝑣𝑗

Ԧ𝐽 =
𝑑

𝑑𝑡
෍

𝑖
𝐸𝑖 𝑟𝑖

Hardy’s formula (1962)

෍

Two body potentials :

Many body potential :

𝐽𝑝𝑜𝑡 =
1

2
෍

𝑖≠𝑗
𝑟𝑖𝑗

𝜕𝑈𝑗

𝜕𝑟𝑖𝑗
⋅ 𝑣𝑖 + 𝑣𝑗



Filtering optical modes

Termentzidis, Merabia, Chantrenne IJHMT (2011)

λ ω =
1

𝑉𝑘𝐵𝑇
2න

0

∞

𝐽 𝑡 𝐽 0 exp 𝑖ω𝑡 𝑑𝑡𝐽𝑝𝑜𝑡 =
1

2
෍

𝑖≠𝑗
𝑟𝑖𝑗 𝐹𝑖𝑗 ⋅ 𝑣𝑖 + 𝑣𝑗

Spectral thermal conductivity :Heat flux vector :

𝐽𝑝𝑜𝑡 ≃
1

2
෍

𝑖≠𝑗
𝑟𝑖𝑗
𝑒𝑞
𝐹𝑖𝑗 ⋅ 𝑣𝑖 + 𝑣𝑗



Anisotropic systems 

λα,β =
1

𝑉𝑘𝐵𝑇
2න

0

+∞

𝐽α 𝑡 𝐽β 0 𝑑𝑡Green-Kubo formula :

Lannord, Merabia, Albaret, Lacroix, Termentzidis, JPCM (2014)



Thermal conductivity :

NEMD vs Green-Kubo equilibrium simulations

Advantages :

- less severe finite size effects
- full thermal conductivity tensor

Inconvenients : 

-need to run several independent 
simulations                        

-plateau is difficult to identity

Advantages : 

-easy to implement 
-computation of the 

thermal boundary resistance

Inconvenients : 

-check of the linear regime
-severe finite size effects !

NEMD Equilibrium Green-Kubo
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Relaxation times : 

phonon-phonon scattering

phonon fusion

P.G. Klemens, « Solid State Physics » Academic Press New-York 1958

τ−1 ω, 𝑇 = γ2
𝑘𝐵𝑇

𝑀𝑣2
ω2

ω𝐷
2(Klemens formula) :

Grüneisen parameter

diagonal

Depends only on

𝑛 𝑘
k’

k’’

k

phonon fission

Three phonons processes

k’’

k

k’

𝐻 =
1

2
෍Φ𝑖𝑗

α,β
𝑢𝑖,α𝑢𝑗,β +

1

6
෍Χ𝑖𝑗𝑘

α,β,γ
𝑢𝑖,α𝑢𝑗,β𝑢𝑘,γCrystal Hamiltonian

Phonon dispersion Phonon scattering 



Thermal conductivity

Matthiessen's rule

1

τ
=

1

τ3𝑝ℎ
+
1

τ𝑏
+

1

τ𝑚
+

1

τ𝑑
+
1

τ𝑔

k’’

k

k’

Phonon scattering

Defect scattering Dislocations

Grain boundaries

Boundary scattering



Relaxation times : 

phonon-phonon scattering

phonon fusion

P.G. Klemens, « Solid State Physics » Academic Press New-York 1958

τ−1 ω, 𝑇 = γ2
𝑘𝐵𝑇

𝑀𝑣2
ω2

ω𝐷
2(Klemens formula) :

Grüneisen parameter

diagonal

Depends only on

𝑛 𝑘
k’

k’’

k

phonon fission

Three phonons processes

k’’

k

k’

𝐻 =
1

2
෍Φ𝑖𝑗

α,β
𝑢𝑖,α𝑢𝑗,β +

1

6
෍Χ𝑖𝑗𝑘

α,β,γ
𝑢𝑖,α𝑢𝑗,β𝑢𝑘,γCrystal Hamiltonian

Phonon dispersion Phonon scattering 



Boltzmann transport equation

𝜕𝑛 𝑘, 𝑠

𝜕𝑡
+ 𝑣𝑔 ⋅ 𝛻𝑛 =෍

𝑘′,𝑘′′
𝐶 𝑘, 𝑘′, 𝑘′′

𝐶 = Γ 𝑘 + Λ 𝑘, 𝑘′, 𝑘′′

Boltzmann Transport Equation :

diagonal

Depends only on

𝑛 𝑘
k’

k’’

kk’’

k

k’

Collision operator

𝜕𝑛 𝑘, 𝑠

𝜕𝑡
+ 𝑣𝑔 ⋅ 𝛻𝑛 = −

𝑛 𝑘, 𝑠 − 𝑛𝑒𝑞 𝑘, 𝑠

τ 𝑘, 𝑠

𝐶 = −
𝑛 𝑘, 𝑠 − 𝑛𝑒𝑞 𝑘, 𝑠

τ 𝑘, 𝑠
Single relaxation time approximation (SRTA):

Boltzmann equation in the SRTA:

λ =
1

3
෍

𝑘,𝑠
𝑐𝑣 𝑣𝑔

2
τ 𝑘, 𝑠Thermal conductivity (SRTA)

Depends on k,k’,k’’ !



Phonon-phonon scattering :perturbation theory

𝑃𝑖
𝑓
=
2π

തℎ
𝑖 𝐻1 𝑓

2ρ 𝐸𝑖 δ 𝐸𝑓 − 𝐸𝑖

E. Fermi

𝐸𝑓

𝐸𝑖

𝐻 = 𝐻0 +𝐻1Hamiltonian :

k’

k’’

kk’’

k

Final stateInitial stateFinal stateInitial state

𝐻0 =
1

2
෍Φ𝑖𝑗

α,β
𝑢𝑖,α𝑢𝑗,β

𝐻1 =
1

6
෍Χ𝑖𝑗𝑘

α,β,γ
𝑢𝑖,α𝑢𝑗,β𝑢𝑘,γ

k’



Normal and Umklapp processes

Umklapp processes

Normal processes

𝑘 + 𝑘′ = 𝑘′′ + Ԧ𝐺

𝑘 + 𝑘′ = 𝑘′′

𝑘

𝑘′

𝑘′′

𝑘

𝑘 + 𝑘′

𝑘′′

𝑘′

𝑘 + 𝑘′

Ԧ𝐺

Brilllouin zone 



DFT calculations Si,Ge

-Importance of N processes

Limit thermal

transport as

Limit thermal

Transport at high frequencies
/high temperatures

τ𝑈 ∼ ω−4

τ𝑁 ∼ ω−2

τ𝑁 ∼ ω → 0

Umklapp

Normal



DFT calculations Si,Ge

-Importance of N processes

-Optical modes participate
in phonon scattering :

>50 % of the scattering processes
Include optical phonons

With optical :

Without

-single relaxation time
Approximation OK for Si,Ge

λ = 500 ΤΤ𝑊 𝑀 𝐾

λ = 150 ΤΤ𝑊 𝑀 𝐾@300𝐾

Umklapp

Normal



Scattering processes in graphene

total

LA

ZA

TA

Constraints on ZA modes
Even number of ZA modes

(symmetry reasons)

Ex : ZA + TA → ZA
ZA + LA → TA forbidden !!   

Predominance of ZA modes



Collective excitations of graphene :
Failure of the single relaxation time approximation

SRTA underestimates

by one order of magnitude

the thermal conductivity

and the maximal mean free

paths



Accumulation function :

phonon spectroscopy

λ ω = න
0

ω

𝑐𝑣 ω 𝑣𝑔 ω Λ ω 𝑑ω

MD simulations Si, Henry and Chen

Message 1 : wide distribution of mean free paths

10 nanometers 10 microns 



Accumulation function :phonon spectroscopy

MD simulations Si, Henry and Chen

Message 1 : wide distribution of mean free paths

Message 2 : kinetic theory severely underestimates mean free paths

λ =
1

3
𝑣𝑠𝑐𝑣Λ

λ = 150 ΤΤ𝑊 𝑚 𝐾@300𝐾

Λ = 100𝑛𝑚

λ ω = න
0

ω

𝑐𝑣 ω 𝑣𝑔 ω Λ ω 𝑑ω

Kinetic theory:



Accumulation function :

phonon spectroscopy

𝑎𝑐𝑐 ω = න
0

ω

𝑐𝑣 ω 𝑣𝑔 ω Λ ω 𝑑ω

MD simulations Si, Henry and Chen

Message 1 : wide distribution of mean free paths

Message 2 : kinetic theory severely underestimates mean free paths

Message 3 : boundary scattering reduces significantly conductivity
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Importance of interface phonon scattering

Thermal interface materials  

Logic circuits 

Thermal management hot spots  High power electronics  

Nanoparticle based phototherapies 

Thermoelectric devices Liquid-solid coolers 

Thermal management of laptops  
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Thermal Boundary Resistance (TBR)
Kapitza resistance

Kapitza 

1941 : Kapitza's measurements of the temperature drop 
near the boundary liquid helium/solid

Kapitza

Kapitza resistance :

lK ~ 1 -100 nm



Some elements of history

First measurements Helium 4-metal
Kapitza 40's

Metal-solid interfaces

Stoner and Maris, Phys. Rev. B (1993)

Blowing activity in the 2000's : Norris, 
Hopkins, Cahill, etc

Liquid-solid interfaces

Barrat and Chiaruttini, Mol. Phys. (2003)
Xe and Keblinski, J. Chem. Phys. (2003)

LJ models

Au/diamond



Computational methods

equilibrium distribution functionReservoir
T1

Reservoir
T2

Landauer formalism : Transport is viewed as a transmission process
between two reservoirs at equilibrium.

Non equilibrium effects :

Landry and McGaughey, Phys. Rev. B (2009)
Merabia and Termentzidis, Phys. Rev. B (2012)

With : T2≈ T1
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Computational methods

equilibrium distribution functionReservoir
T1

Reservoir
T2

Landauer formalism : Transport is viewed as a transmission process
between two reservoirs at equilibrium.

Non equilibrium effects :

Landry and McGaughey, Phys. Rev. B (2009)
Merabia and Termentzidis, Phys. Rev. B (2012)

Mingo and Yang, Phys. Rev. B (2003)
Guo et al., Phys. Rev. B (2020)

With : T2≈ T1

NEGF

InterfaceLeft lead Right lead -Phonon NEGF 

(Non equilibrium Green’s functions)

𝑡12 𝜔 = 𝑇𝑟 (Γ1𝐺 Γ2 𝐺
+)

𝐺 𝜔 = (𝜔2𝐼 − 𝐻𝑑 − ΤΣ1 − Σ2)
−1
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Computational methods

equilibrium distribution functionReservoir
T1

Reservoir
T2

Landauer formalism : Transport is viewed as a transmission process
between two reservoirs at equilibrium.

Non equilibrium effects :

Landry and McGaughey, Phys. Rev. B (2009)
Merabia and Termentzidis, Phys. Rev. B (2012)

Stoner and Maris, Phys. Rev. B (1993)
Zhao and Freud, J. Appl. Phys. (2005)
Alkurdi and Merabia, Appl. Phys. Lett. (2017)

Mingo and Yang, Phys. Rev. B (2003)
Guo et al., Phys. Rev. B (2020)

With : T2≈ T1

NEGF

InterfaceLeft lead Right lead

  02 =uΦ+uδωmΦ B
β

AB
βα,

A
ββα,A

AA
βα, 

  02 =uδωmΦ+uΦ B
ββα,B

BB
βα,

A
β

AB
βα, 

-Phonon NEGF 

(Non equilibrium Green’s functions)

-Lattice dynamics 

rk


0k


tk


𝑡12 𝜔 = 𝑇𝑟 (Γ1𝐺 Γ2 𝐺
+)

𝐺 𝜔 = (𝜔2𝐼 − 𝐻𝑑 − ΤΣ1 − Σ2)
−1



Molecular dynamics

Green-Kubo simulations 

𝐺 =
1

𝐴𝑘𝐵𝑇
2න

0

+∞

𝑞 𝑡 ⋅ 𝑞 0 𝑑𝑡

Analogous to the Green-Kubo formula
for the thermal conductivity

𝐺 = 𝑅 =
A

𝑘𝐵𝑇
2න

0

+∞

𝑇 𝑡 ⋅ 𝑇 0 𝑑𝑡

Barrat and Chiaruttini, Mol. Phys. (2003)
Merabia and Termentzidis, Phys. Rev. B (2012)
Chalopin et al., Phys. Rev. B  (2012)
Rajabpour et al., J. Chem. Phys. (2019)

Steady state non equilibrium 
simulations 

Barrat and Chiaruttini, Mol. Phys. (2003)
Landry and McGaughey, Phys. Rev. B (2009)
Merabia and Termentzidis, Phys. Rev. B (2012)



Transient simulations 

Temperature relaxation

Δ𝑇 𝑡 ∝ exp Τ−𝑡 τ

𝐺 = Τ𝐶𝑣 𝐴τ

S. Shenogin et al., J. Appl. Phys. 2004
E. Lampin et al., Appl. Phys. Lett. 2012
S. Merabia and Termentzidis, Phys. Rev. B 2014
H. Han, S. Merabia, F. Müller-Plathe, Nanoscale 2017

Well adapted to irregular interfaces !



Effects influencing thermal

boundary conductance

Giri and Hopkins, Adv. Func. Mat. (2019)

Hopkins, ISRN Mech. Eng (2013)



 Continuum acoustics

 Acoustic impedances

 Specular scattering

Phonon transmission :  

Interface spring stiffness :

Prasher, Appl. Phys. Lett. 94 (2009) 041905
Merabia et al., Int. Jour. Heat Mass Transf. 100 (2016) 287

Acoustic Mismatch Model (AMM)

Generalized AMM model :  

Khalatnikov (1952)

𝐾12 =
𝑑2𝑉12

𝑑𝑟2
=72/2 Τ1 3𝑛𝑠 Τ𝜀12 𝜎12

2
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The transmission coefficient
is given by detailed balance

Diffuse Mismatch Model (DMM)

Phonon transmission :  

The transmission coefficient
is given by detailed balance

Swartz et Pohl, Appl. Phys. Lett. (1987)



Comparison with AMM

S. Merabia and K. Termentzidis, 
Phys. Rev. B 2012

S. Merabia and K. Termentzidis, 
Phys. Rev. B 2014



S. Merabia and K. Termentzidis, 
Phys. Rev. B 2014

Small roughnesses

Large roughnesses

Heat flux propto the projected interfacial area

Heat flux propto  the true interfacial area

Effect of the roughness



Small roughnesses

Large roughnesses

Heat flux propto the projected interfacial area

Heat flux propto  the true interfacial area

Lee et al., ACS ami (2016) 

Experimental confirmation



Comparison with the models :
spectral transmission

T. Feng et al., Phys. Rev B 2019 C. Hua et al., Phys. Rev B 2017

Experiments Al/Si MD system Si/Ge



Comparison with DMM model

Kadlokar and Feser, J. Appl. Phys. 2017

Highly disordered interfaces

Modes are not found to loose memory of their polarization and orientation



Comparison with the models:
conclusions 

1. AMM and DMM models may provide a good description 
of the thermal boundary conductance

2. However, the spectral transmission is in general not 
in agreement with simulations/experiments

3. In conclusion, they are phenomenological models which
may help understand the physics of phonon scattering. 
Accurate predictions should rather rely on atomistic models
such as NEGF or lattice dynamics with ab-initio force constants. 



Metal-semiconductor interfaces 

Measurements :
Hopkins and Norris. J. Appl. Phys. (2009)

Theory :
Sergeev, Phys Rev B (1998)
Mahan, Phys Rev B (2009)
Lombard, Detcheverry, Merabia, J. Phys. Cond. Mat. (2015)

Metal electrons 
Interfaces ? 

Semi-conductors phonons 

Alkurdi, Lombard, Merabia, Phys. Rev. Appl. (2020)



Electron-phonon interface thermal transport  

Sadasivam et al. Phys. Rev. B (2017)

Work in progress (Adessi, De San Feliciano)



Thermal transport across nanoscale vacuum gaps

Three orders of magnitude difference
with near field radiation theory

Kloppstech et al., Nat. Com. (2017)

Good agreement with near field radiation theory

Cui et al., Nat. Com. (2017)



gold

Thermal transport across
gold/vacuum gap/gold

gold

gap

Phonons dominate thermal transport for subnanometer gaps 
Alkurdi, Adessi, Tabatabaei, Termentzidis, Merabia, Int. Jour. Heat Mass Transf. 158 (2020) 199963
Guo et al., in preparation 

Lattice dynamics 

See Yangyu Guo’s 
poster 

MD + NEGF  



Interfacial heat transfer 
at solid-liquid interfaces

Effect of the wetting angle

Ge et al., Phys. Rev. Lett. 2006, 
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