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Blackbody radiation

-20
410 T=300K ——

Max Planck, 1901

(DOI: 10.1115/HT2009-88060)

e Broadband spectrum
 Small temporal coherence (700K = 25 fs)
 Small spatial coherence (/209K = ¢73%0K — 6.7 um)
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Planck law and Stefan-Boltzmann law
e Energy density in equilibrium

T#0 BB _ 0@ gy L MOy,
2 2
""" e Planck law
----- uBB — hw w?
w fiw 12c3
ekl — 1

e Stefan-Boltzmann law

¢BB = Z/dwuBB(w) = 0'T4

. e Kirchhoff law:

emissivity = absorptivity

— No real emitter can emit more heat than a blackbody!
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On the validity of Planck’s theory

Throughout the following discussion
it will be assumed that the linear
dimensions of all parts of space
considered, as well as the radii
of curvature of all surfaces under

consideration, are large compared
’ with the wave lengths of the rays
considered . ..

Max Planck,
1930 The theory of heat radiation, 1913
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On the validity of Planck’s theory

Throughout the following discussion
it will be assumed that the linear
dimensions of all parts of space
considered, as well as the radii
of curvature of all surfaces under

consideration, are large compared
’ with the wave lengths of the rays
4 considered . ..
Max Planck,
1930 The theory of heat radiation, 1913

What if distances are smaller than Ay, or /.?
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Introduction

Generalized Planck law



Planck law in near-field regime?

¢ Energy density in equilibrium

uBB = %0<|§ E)y + %(H A,

G.S.Agarwal, PRA 11, 230 (1975), G.S.Agarwal, PRA 11, 253 (1975)
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Generalized Planck

IC: 76 Um 1017
z=10pm ——
T = 300K

A

o 5107
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S. C 102

: 0 2 4 6 8 10
W/ w,

e Generalized Planck law

e Near-field properties
[ ]
[ ]
[ ]
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Generalized Planck

IC: 76 Um 1017
|———— z=10pm ——
T = 300K z=1um
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: 10-19
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e Generalized Planck law @l o
hw
Uy = —5 D(w, 2)
ek’ — 1

e Near-field properties
[ ]
[ ]
[ ]
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Generalized Planck
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T = 300K f
=
e S, 10-19
Z 3
sic -

e Generalized Planck law

e Near-field properties
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Generalized Planck

IC: 76 Um 1017
T = 300K 5
%
i S, 1079
4 3
sic -

e Generalized Planck law

¢ Near-field properties
® enhanced energy density (eckhardt, z. Phys. B 46, 85 (1982))
[ ]
[ ]

[ ]
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Generalized Planck

IC: 76 Um 1017
T = 300K 5
%
i S, 1079
4 3
sic -

e Generalized Planck law

e Near-field properties
® enhanced energy density (eckhardt, z. Phys. B 46, 85 (1982))

® narrowband spectrum (eckhardt, z. Phys. B 46, 85 (1982))
[ ]

[ ]
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Generalized Planck

l[c=7.6 um 10l
|—— z=10pm ——
T = 300K z=1um
i Z = 0.5pm e
“
<0 2 1070
7 %
Sc 10% !
i 0 2 4 6 8 10
e Generalized Planck law /o

e Near-field properties
® enhanced energy density (eckhardt, z. Phys. B 46, 85 (1982))
® narrowband spectrum (eckhardt, z. Phys. B 46, 85 (1982))
® |arger temporal coherence (shchegrov et al., PRL 85, 1548 (2000))
[ ]
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Generalized Planck

IC: 76 Um 1017
<—>E
T = 300K :
A
- g 10%
z e
SiC 102 [
: 0 2 4 6 8 10
e Generalized Planck law ol e
Uy = —5 D(w, 2)
eksT — 1

e Near-field properties

® enhanced energy density (eckhardt, z. Phys. B 46, 85 (1982))
® narrowband spectrum (eckhardt, z. Phys. B 46, 85 (1982))
® |arger temporal coherence (shchegrov et al., PRL 85, 1548 (2000))

® |arger spatial coherence (carminati, Greffet, PRL 82, 1660 (1999))
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Physics behind generalized Planck law

propagating waves total int. reflection surface waves

sic Vacuum sic e, Vacuum sic e \vacuum
w \ k )
' Vo

z z
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Introduction

Scanning noise microscope (SNoiM)



Scanning noise microscope (SNoiM)

THz detector
L

e

EH (; Flucrua(mg
EM-fields

Susumu Komiyama el
(Tokyo University)
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Measuring the near-field energy density

A THz detector
b

IS

NF-signal (v ™1
5

>

® 1o height
o height ) NF-signal (V)
Flu((uanng [Te Kl
EM fields [zzoo K
z 3V
[1700 K]

ihoook]
VA

0K]

Nano- ﬂuauanon in 2DEG

Weng, Komiyama, Yang, An, Chen, SAB, Kajihara, Lu, Science 360, 775 (2018)

e Signal at the detector oc (|E|?) o |or[2(|E(Fyp)[?)
¢ Sensitive to the energy density

hw

= ————— De(w, Iy
Ug o/ Ke Teamte — 1 E( ) tlp)

* Measurement of the LDOS and Tgumple

Svend-Age Biehs Nanoscale Heat Radiation Frejus, 11.05.2022

9/24



Theoretical model for SNoiM

detector * Power at detector
e Emission of substrate

J P o (T, - To)(1 - Irf)

fffffffffffffffffffffffff * Emission of NP

xth P9 o (Tp — Tp)Im(cx)
® Absorption in NP
P o (Tp — Ts)Im(a)
Joulain et al., JOSRT 136, 1 (2014) e Scattering by NP
Herz, SAB, JQSRT 266, 107572 (2021) Plzeq . (Ts B Tb)\ a|2

Herz, SAB, arXiv:2112.12016 (2022)

How to treat out of equilibrium problems?
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Fluctuational electrodynamics
Theoretical framework
Near-field heat flux
Landauer-form
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Fluctuational electrodynamics
Theoretical framework



Rytov’s fluctuational electrodynamics

e Maxwell’s egs. + fluct. source currents
(J)=0

e Fluctuating fields

E,(w,r) = iwuo/ d3r Gaﬁ(r r)Js(r,w)

e Fluctuation-dissipation theorem
(Ja(r)J5(r')) = O(w, T)2weq [Im(eap)d(r —1')]
e Mean energy of a harmonic oscillator

o o
Ow, T) =%+ Gt 1
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Field correlation functions

e Correlation functions (applying the FDT)

(E,(r, )Es(F, 1) :/ gﬁeiw“*')zugwse(w, T)/d3r”
v

—o0 v

« (GoGEE(I’, r")g’/(r”)GEET(r/, r//))
af

(Eur O = [

— 00

dw ei“’(t_t/)2u(2)w3@(w, T) /dsr”
2’/T %%

X (eoGEE(I’, r”)g”(r”)GHET(r’, r//))
af

etc.
e Symmetrically ordered operators

e Stress tensor: Casimir-Van der Waals forces
(Lifshitz, JETP 2, 73 (1956))
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Fluctuational electrodynamics

Near-field heat flux



Heat flux expression
Polder and van Hove, PRB 4, 3303 (1971)

¢ =(S;)
dw hw a2k
’ - /Z ehw/(aT) — 1 | (27)2 (7e+ )

d

e Transmission coefficient

(=) (=212 <
. o ) 1=r%r20 exp(2ik.d)[2’
Ti(w,k; d) = 4Im(’ri‘°l)Im(r,?°)e*2|k2‘d
11102 exp(2ik,d)E * 1~

ol€ olg
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Propagating modes
¢ Plane wave

E, = A(x, y; t)elk®

* Prop. modes x < ¢

[2
w

* Evan. modes k > ¢

2
/ w
_ ]2 W
k; =it/ k CZGC

® Res. transmission

nm
ky=—,neN
T d
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Frustrated internal reflection

W
e Propagating waves
O S 4 inside the medium
w=CK/E
wr kiz= W 2eR
1,z = ?6 — K° €
w
K p—
ky = R < c \/E
i K
c
. Ky
o | .
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Frustrated internal reflection

e Propagating waves
inside the medium

W,
i 2
- w
@r - ki,=1\—5e—Kr2€ER
1,Z 02
w
K —_—
» &K< C\/E
©
c
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Surface modes

w
p * ’bound’ to the surface
w T . .
) L * p-polarisation only
w; e Transmission coeff. k > w/c
. 4Im(rg°)lm(r§°)e—2”d

P11 = r10r20 exp(—2kd)|?

z
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Surface modes

w
* ’'bound’ to the surface
w
) S ® p-polarisation only
@, ¢ Transmission coeff. k > w/c
N 4Im(r;°)1m(r§°)e‘2"d

P — r10r20 exp(—2rd)|2
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Transmission coefficient (SiC, u = hw/kg T)

d = 100nm
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@/ Pgg

Consequences for radiative heat flux

1000
SiC Vacuum SiC
100 o ~p
) | )
10 T = 300K 5 T=0K
1 ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
0.1
10 107 10 110

d/m

®gg = blackbody value
Polder and van Hove, PRB 4, 3303 (1971)

Pendry, J. Phys. 11 6621 (1999)

Volokitin and Persson, RMP 79, 1291 (2007)

SAB, Rousseau, Greffet, PRL 105, 234301 (2010)
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@/ Pgg

Consequences for radiative heat flux

1000
propagating modes sic Vacuum sic
100 &~ ¢ =P
) | )
10 T = 300K 5 T=0K

0.1
10 107
d/m

®gg = blackbody value
Polder and van Hove, PRB 4, 3303 (1971)

Pendry, J. Phys. 11 6621 (1999)

Volokitin and Persson, RMP 79, 1291 (2007)

SAB, Rousseau, Greffet, PRL 105, 234301 (2010)
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Consequences for radiative heat flux

1000

propagating modes SiC Vacuum SiC

frustrated modes -
100

10 oo

@/ gy

0.1
10 10°

d/m

®gg = blackbody value
Polder and van Hove, PRB 4, 3303 (1971)

Pendry, J. Phys. 11 6621 (1999)

Volokitin and Persson, RMP 79, 1291 (2007)
SAB, Rousseau, Greffet, PRL 105, 234301 (2010)

Svend-Age Biehs Nanoscale Heat Radiation Frejus, 11.05.2022

19/24



Consequences for radiative heat flux

1000
propagating modes SiC Vacuum SiC

frustrated modes -+

100 SPhP e
o
o
=2
<

T = 300K d T=0K

0.1
10 10°

®gg = blackbody value

Polder and van Hove, PRB 4, 3303 (1971)
Pendry, J. Phys. 11 6621 (1999)

Volokitin and Persson, RMP 79, 1291 (2007)
SAB, Rousseau, Greffet, PRL 105, 234301 (2010)
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@/ Pgg

Consequences for radiative heat flux

1000
propagating modes sic Vacuum sic
frustrated modes
100 l w
10 T =300K m T=0K
Sic Vacuum Sic
T = 300K P T=0K
®gg = blackbody value
Sic Vacuum SiC
Polder and van Hove, PRB 4, 3303 (1971)
Pendry, J. Phys. 11 6621 (1999) jU
Volokitin and Persson, RMP 79, 1291 (2007)
SAB, Rousseau, Greffet, PRL 105, 234301 (2010)
T = 300K d T=0K
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Consequences for radiative heat flux

1000 =

@/ Pgg

0.1

propagating modes
frustrated modes

d/m

®gg = blackbody value
Polder and van Hove, PRB 4, 3303 (1971)

Pendry, J. Phys. 11 6621 (1999)

Volokitin and Persson, RMP 79, 1291 (2007)

SAB, Rousseau, Greffet, PRL 105, 234301 (2010)

sic Vacuum sic
-~ o~
ap | P
T=300K m T=0K
Sc Vacuum Sic

|2

T = 300K

Vacuum

/N

d

T=0K

Stefan-Boltzmann law is no limit in the near-field regime!
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Experimental verification

Heat transfer coefficient (W/m?K)

AT = 19.0 K
AT = 15.0 K =

| 10 100
Separation (um)

® Huetal, APL 92, 133106 (2008)
Ottens et al., PRL 107, 014301 (2011)
Kralik et al., PRL 109, 224302 (2012)
Song et al., Nat. Nanotech. 11, 509 (2016)
Bernardi et al., Nat. Comm. 7, 12900 (2016)

M. Ghashami, PRL 120, 175901 (2018)

10?

N\
LA

Diameter 40 um

Thermal conductance (nW K™
3

3 N
O \ \D|ameter 22 pm
Hestingsement

1 10' 10% 10° 10*

Sphere-plane separation (nm)

Shen et al., Nano Lett. 9, 2909 (2009)
Rousseau et al., Nat. Photonics 3, 514 (2009)
van Zwol et al., PRL 108, 234301 (2012)
Song et al., Nat. Nanotech. 10, 253 (2015)
Kim et al., Nature 528, 387 (2015)

Cui et al., Nat. Comm. 8, 14479 (2017)

700x dpg at 25nm! Fiorino et al. Nano Lett. 18, 3711 (2018)
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Fluctuational electrodynamics

Landauer-form



Landauer-like expression for the heat flux

L
thermal
electron electron d reservoir 2
reservoir 1 IW reservoir 2
EF+ eV Er
T

/:rvzz—,fz[znjrn}v P T[Z/dz”“ }

Jdu v f(u)Ti(u, d)
Jdu u?f(u)

u26u
W= @y

Biehs, Rousseau, Greffet, PRL 105, 234301 (2010)

T, =

Wu et al., PRB 78, 235421 (2008)
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Mean transmission coefficient

1
H
3
S
S
8 0.1
- ’ 22 2
£ kg T d°k =
® = STIAT
o 3h - (27)
g - I
= d=100m —— - =s,p
g d=100nm
d =1000 nm
0.001
10?2 100 1 100 102 10° 10*
KA
1000 =
™ propagating modes
N frustrated modes
100 " SPhP.
> total
@
2
& 10
e
1 .
01 —
10® 107 10° 10°

d/m

SAB, Rousseau, Greffet, PRL 105, 234301 (2010)
fundamental limits:

Ben-Abdallah and Joulain, PRB 82, 121419 (R)(2010)
SAB, Tschikin, Ben-Abdallah, PRL 109, 104301 (2012)

Miller, Johnson, Rodriguez, PRL 115, 204302 (2015)
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Application of near-field enhanced heat transfer

Thermal management: NF thermo-photovoltaics

Diode & Transistor

.ase\ Pdeiecwr \
Pllme! &t“ dopedSi £° \4

g VO

:
xhj\*y

Mittapally et al., Nat. Comm. 12, 4364 (2021)

heater

thermometer
0 actuation

Fiorino et al., ACS Nano 12, 5774 (2018)

Ben-Abdallah, SAB, PRL 112, 044301 (2014)
NF thermal microscope Many-body effects

Kloppstech et al., Nature Comm. 8, 14475 (2017)  SAB, Messina, et al., RMP 93, 025009 (2021)
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Summary

¢ New laws of thermal radiation in the near-field regime
e Fluctuational electrodynamics as theoretical framework

e Heat flux can surpass blackbody limit due to evanescent
waves

¢ Experimental evidence down to a few nanometer distance

e New heat flux channel in the extreme near-field?
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