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Blackbody radiation

Max Planck, 1901
(DOI: 10.1115/HT2009-88060)
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• Broadband spectrum
• Small temporal coherence (τ300K

c = 25 fs)
• Small spatial coherence (l300K

c = cτ300K
c = 6.7µm)
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Planck law and Stefan-Boltzmann law

L

L

L

T = 0

• Energy density in equilibrium

uBB =
ε0
2
〈Ê · Ê〉th +

µ0

2
〈Ĥ · Ĥ〉th

• Planck law

uBB
ω =

~ω

e
~ω

kBT − 1

ω2

π2c3

• Stefan-Boltzmann law

ΦBB =
c
4

∫
dωuBB(ω) = σT 4

• Kirchhoff law:

emissivity = absorptivity

→ No real emitter can emit more heat than a blackbody!
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On the validity of Planck’s theory
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Max Planck,
1930

Throughout the following discussion
it will be assumed that the linear
dimensions of all parts of space
considered, as well as the radii
of curvature of all surfaces under
consideration, are large compared
with the wave lengths of the rays
considered . . .

The theory of heat radiation, 1913
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Max Planck,
1930

Throughout the following discussion
it will be assumed that the linear
dimensions of all parts of space
considered, as well as the radii
of curvature of all surfaces under
consideration, are large compared
with the wave lengths of the rays
considered . . .

The theory of heat radiation, 1913

What if distances are smaller than λth or lc?
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Planck law in near-field regime?

lc

T = 0

• Energy density in equilibrium

uBB =
ε0
2
〈Ê · Ê〉th +

µ0

2
〈Ĥ · Ĥ〉th

G.S.Agarwal, PRA 11, 230 (1975), G.S.Agarwal, PRA 11, 253 (1975)
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Generalized Planck
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T = 300K
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Physics behind generalized Planck law

propagating waves
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Scanning noise microscope (SNoiM)

Susumu Komiyama
(Tokyo University)
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Measuring the near-field energy density

Weng, Komiyama, Yang, An, Chen, SAB, Kajihara, Lu, Science 360, 775 (2018)

• Signal at the detector ∝ 〈|Esc|2〉 ∝ |α|2〈|E(rtip)|2〉
• Sensitive to the energy density

uE =
~ω

e~ω/kBTsample − 1
DE (ω, rtip)

• Measurement of the LDOS and Tsample
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Theoretical model for SNoiM
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λ th

dipole approximation
thermal discrete

detector

multilayer samples

(S−matrix method)

temperature profiles

(direct Integration)

surface profiles

(perturbation theory)

• Power at detector
P = Psub +Peq +P leq

1 +P leq
2

• Emission of substrate
Psub ∝ (Ts − Tb)(1− |r |2)

• Emission of NP
Peq ∝ (Tp − Tb)Im(α)

• Absorption in NP
P leq

1 ∝ (Tb − Ts)Im(α)

• Scattering by NP
P leq

2 ∝ (Ts − Tb)|α|2
Joulain et al., JQSRT 136, 1 (2014)

Herz, SAB, JQSRT 266, 107572 (2021)

Herz, SAB, arXiv:2112.12016 (2022)

How to treat out of equilibrium problems?
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Rytov’s fluctuational electrodynamics

J
e/m

T
ε,µ

r
r’ E

• Maxwell’s eqs. + fluct. source currents

〈J〉 = 0

• Fluctuating fields

Eα(ω, r) = iωµ0

∫
V

d3r ′GEE
αβ(r, r′)Jβ(r′, ω)

• Fluctuation-dissipation theorem

〈Jα(r)J∗β(r′)〉 = Θ(ω,T )2ωε0
[
Im(εαβ)δ(r− r′)

]
• Mean energy of a harmonic oscillator

Θ(ω,T ) :=
~ω
2

+
~ω

e~ω/kBT − 1
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Field correlation functions

• Correlation functions (applying the FDT)

〈Eα(r, t)Eβ(r′, t ′)〉 =

∫ ∞
−∞

dω
2π

eiω(t−t′)2µ2
0ω

3Θ(ω,T )

∫
V
d3r ′′

×
(
ε0G

EE(r, r′′)ε′′(r′′)GEE†(r′, r′′)
)
αβ

〈Eα(r, t)Hβ(r′, t ′)〉 =

∫ ∞
−∞

dω
2π

eiω(t−t′)2µ2
0ω

3Θ(ω,T )

∫
V
d3r ′′

×
(
ε0G

EE(r, r′′)ε′′(r′′)GHE†(r′, r′′)
)
αβ

etc.
• Symmetrically ordered operators
• Stress tensor: Casimir-Van der Waals forces

(Lifshitz, JETP 2, 73 (1956))
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Heat flux expression
Polder and van Hove, PRB 4, 3303 (1971)

z

x

T2T1

d

= 0 K

SiCSiC

= T
= 300 K

Φ = 〈Sz〉

=

∫
dω
2π

~ω
e~ω/(kBT ) − 1

∫
d2κ

(2π)2

(
Ts + Tp

)

• Transmission coefficient

Ti(ω,κ; d) =


(1−|r10

i |
2)(1−|r20

i |
2)

|1−r10
i r20

i exp(2ikzd)|2 , κ <
ω
c

4Im(r10
i )Im(r20

i )e−2|kz |d

|1−r10
i r20

i exp(2ikzd)|2 , κ >
ω
c
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Propagating modes

= c

lig
ht 

lin
e

propagating modes

evanescent modes

πnc
d

κ

κ

ω

ω

c

ky

kx

ω

• Plane wave

Ey = A(x , y ; t)eikzz

• Prop. modes κ < ω
c

kz =

√
ω2

c2 − κ
2 ∈ R

• Evan. modes κ > ω
c

kz = i

√
κ2 − ω2

c2 ∈ C

• Res. transmission

kz ≡
nπ
d
,n ∈ N
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Frustrated internal reflection

= c

= c

L

T

κ

κ

κ

ω

ω ε

ω

ω

ω

c

c

ky

kx

ω

εω

• Propagating waves
inside the medium

k1,z =

√
ω2

c2 ε− κ
2 ∈ R

⇔ κ <
ω

c
√
ε

z

x

Svend-Age Biehs Nanoscale Heat Radiation Frejus, 11.05.2022 16 / 24



Frustrated internal reflection

= c

= c

L

T

κ

κ

κ

ω

ω ε

ω

ω

ω

c

c

ky

kx

ω

εω

• Propagating waves
inside the medium

k1,z =

√
ω2

c2 ε− κ
2 ∈ R

⇔ κ <
ω

c
√
ε

z

x

Svend-Age Biehs Nanoscale Heat Radiation Frejus, 11.05.2022 16 / 24



Surface modes

= c

L

T

κ

κ

ω

ω

ω

ω

c

1
d~

ky

kx

ω

• ’bound’ to the surface
• p-polarisation only
• Transmission coeff. κ� ω/c

Tp ≈
4Im(r10

p )Im(r20
p )e−2κd

|1− r10
p r20

p exp(−2κd)|2

z

x

yH
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Transmission coefficient (SiC, u = ~ω/kBT )

d = 5000nm

d = 500nm

d = 100nm

d = 100nm
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Consequences for radiative heat flux
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Stefan-Boltzmann law is no limit in the near-field regime!



Experimental verification

• Hu et al., APL 92, 133106 (2008)

Ottens et al., PRL 107, 014301 (2011)

Kralik et al., PRL 109, 224302 (2012)

Song et al., Nat. Nanotech. 11, 509 (2016)

Bernardi et al., Nat. Comm. 7, 12900 (2016)

M. Ghashami, PRL 120, 175901 (2018)

• Shen et al., Nano Lett. 9, 2909 (2009)

Rousseau et al., Nat. Photonics 3, 514 (2009)

van Zwol et al., PRL 108, 234301 (2012)

Song et al., Nat. Nanotech. 10, 253 (2015)

Kim et al., Nature 528, 387 (2015)

Cui et al., Nat. Comm. 8, 14479 (2017)
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700×ΦBB at 25nm! Fiorino et al. Nano Lett. 18, 3711 (2018)
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Landauer-like expression for the heat flux

F
E  + e V FE

electron
reservoir 1

electron
reservoir 2

L

W

I = ΓV =
2e2

h

[∑
n

Tn

]
V

Wu et al., PRB 78, 235421 (2008)

d

TT +    T∆

reservoir 1

thermal

reservoir 2

thermal

Φ =
π2k2

BT
3h

[∑
i=s,p

∫
d2κ

(2π)2T i

]
∆T

T i =

∫
du u2f (u)Ti (u,d)∫

du u2f (u)

f (u) =
u2eu

(eu − 1)2

Biehs, Rousseau, Greffet, PRL 105, 234301 (2010)
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Mean transmission coefficient
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fundamental limits:

Ben-Abdallah and Joulain, PRB 82, 121419 (R)(2010)

SAB, Tschikin, Ben-Abdallah, PRL 109, 104301 (2012)

Miller, Johnson, Rodriguez, PRL 115, 204302 (2015)
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Application of near-field enhanced heat transfer
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Thermal management:
Diode & Transistor

Fiorino et al., ACS Nano 12, 5774 (2018)
Ben-Abdallah, SAB, PRL 112, 044301 (2014)

NF thermo-photovoltaics

Mittapally et al., Nat. Comm. 12, 4364 (2021)

NF thermal microscope

Kloppstech et al., Nature Comm. 8, 14475 (2017)

Many-body effects

SAB, Messina, et al., RMP 93, 025009 (2021)
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Summary

• New laws of thermal radiation in the near-field regime

• Fluctuational electrodynamics as theoretical framework

• Heat flux can surpass blackbody limit due to evanescent
waves

• Experimental evidence down to a few nanometer distance

• New heat flux channel in the extreme near-field?
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