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Outline
• Heat transport in nano & microstructures, basics, models

and challenges

• Using Monte Carlo technique to solve the Boltzmann
transport equation for phonons

– Application of MC-BTE tool to appraise thermal properties in
nanostructures

– Improvement of MC-BTE by coupling with ab-initio calculations

– MC-BTE & Green-Kubo

– MC-BTE calculations for TE materials (if time not exceed !)

• Summary and perspectives
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Heat transport in nano & 
microstructures.

Basics, models and challenges



Tailoring heat transport in nano & microstructures

Challenges 
• Control of overheating

o minimize failure, 
o hotspots occurrence 

o improve performance of materials
o etc

• Tailoring heat transport properties
o thermoelectric material improvement
o thermal cloaking, thermal rectification
o etc

• Thermal management applications
o electronic, optical, optoelectronic and thermoelectric 

devices,
o thermal diode
o etc
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http://telab.vuse.vanderbilt.edu/research.html

Nature 489, 414–418 (2012)



Phonons and thermoelectricity

In semiconductors for thermoelectricity “phonons” and “electrons” are
both energy carriers that must be taken into account to design efficient
materials, i.e. with large figure of merit ZT.
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Heat transport in nano & microstructures

Basics
• Heat transfer at the nanoscale differs 

from what occurs in bulk material:
o Fourier’s law needs to be considered with 

caution

o Heat transport equation is no longer valid

o Thermal properties of materials depend on 
length scales and temperature

• Heat transport varies between diffusive 
and ballistic regimes
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Heat transport modeling, a multiscale issue

7

DFT MD MC FEM, 
FVM

few atoms & 
electrons

thousands
of atoms crystals structures

~ 1nm 10~100nm 100nm ~ 
100µm

100µm ~ 
above

http://www.dierk-raabe.com/



Heat transport, Monte Carlo methods  1
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Monte Carlo methods refers to techniques that use statistical
tools to model energy carriers displacements and scattering
mechanisms. This techniques are used in several domain, in
the field of thermal transport there are:

v Radiative heat transfer of semi-transparent (absorbing,

scattering & emitting media), through the resolution of the

Radiative Transfer Equation (RTE)

v Conductive heat transfer at macroscale (“Marcheurs

Brownien”), through the solution Heat equation

v Heat transport at microscale with the resolution of

Boltzmann Transport Equation (BTE) for phonons



Heat transport, Monte Carlo methods  2
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Monte Carlo methods relies on the use of probability
distributions. Basic case of Heat Equation solution with
“Browian walkers” :

V. Gonneau, IJHMT, 184, 122261
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( ) volqTk
dt
dTC +ÑÑ= .r

Lbulk How provide a statistical approach to
solve this equation without using PDE.
Basic assumptions :
• Transport is in the diffuse regime

(Diffusion coefficient is known)
• Energy carriers all transport the same

amount of energy
• Displacement of Energy carriers follows

a Normal distribution
• Location of Energy carriers is

determined with uniform distribution



Heat transport, Monte Carlo methods  3
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“Browian walkers” : Let assume 1D model (along Lbulk), the system is
discretized in intervals dL= Lbulk/Nx. The applied thermal gradient is
DThc=(Th-Tc)/Lbulk. This quantity drives the amount of energy carried by each
walkers dhr

V. Gonneau, IJHMT, 184, 122261
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With Mr the number
of Brownian walkers

The temperature at 
time t and location i, 
is defined as :

𝑇&$ = 𝑇, +
𝑀&
$×𝛿ℎ,
𝜌,𝐶,𝑉$

Each energy carrier 
displacement is ruled by 
material thermal
diffusivity as :

𝑥&-+$ = 𝑥&$ + 2 𝑎 𝛿𝑡 ×ℛ.

With ℛ/ and ℛ. a random numbers drawn on 
uniform and normal centered probability distribution 

Each energy carrier position is set according a 
uniform probability distribution

𝑥0$ = 𝐿12#3 × ℛ/
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Displacements of walkers allows energy carriers
in excess on the hot side to flow toward the
cold size.

𝑥&-+$ = 𝑥&$ + 2 𝑎 𝛿𝑡 ×ℛ.
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Heat transport, Monte Carlo methods  5
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Hot and cold size act as blackbodies (absorbing and emitting Brownian
walkers at the prescribed temperatures

Th
TcF

Lbulk

Example : Test case on bulk Si;
kSi = 151 W/mK
Initially Mr=250 all in hot blackbody;
Tr=0°C, with DThc=10°C
L=0.1m ; dt = 5e-4s ; Nt =2e4 ; Ni=51

𝑇&$ = 𝑇, +
𝑀&
$×𝛿ℎ,
𝜌,𝐶,𝑉$



Heat transport, Monte Carlo methods  6

13

Transient state can
be recovered

Th
TcF

Lbulk



Heat transport, Monte Carlo methods  7
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Steady state is recovered

Th
TcF

Lbulk

kMC = 151.25 W/mK



Monte Carlo technique to solve 
the Boltzmann transport 
equation for phonons

15



Phonons and heat propagation

In semiconductors “phonons” are quasiparticles that characterize 
the vibrational motions of a lattice. They propagate heat and can 
be either considered as wave or particles.
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Vibration ↔ Dispersion relations

Kinetic model for thermal conductivity:

k = 1
3
ρ  C  vg  Λ    ;     Λ = vgτ

Scattering 
mechanisms

L º ℓ: phonon mean free path
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Boltzmann transport equation for phonons
Phonons obey to the Boltzmann Transport Equation (BTE). When considered as
particles their motion and interactions (scattering) in nanostructures depends on:
temperature, dispersion properties and scattering lifetimes of the considered
material.
The BTE is solved in the frame of the relaxation time approximation by a Monte Carlo
method.

BTE
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Relaxation time approximation

f is the distribution function
↔ number of phonons
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V
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Problem: t(w) appraisal is not explicit. 
Analytic expressions can be found for some 
bulk materials (Si, Ge, GaN, C,  etc) but 
littérature is poor for complex compounds

Solution? Ab-initio calculation of t



The MC solution of the BTE for phonons lies on several steps:

• Design of the nanostructure geometry and discretization
• Prescription of boundary conditions
• Initialization of the phonon state in the discretized cells

• Motion of phonon during a time step
• Scattering of phonon to restore thermodynamic equilibrium
• Calculation of local temperature and heat flux

• Derivation of thermal conductivity
• Assessment of other quantities (phonon spectrum vs mfp, 

phonon phase function, etc)
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Monte Carlo solution of the BTE

Iterative 
process

Post-
processing

Initialization
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Monte Carlo solution of the BTE - initialization
Nanostructures

Nanoporous Nanowire

Superlattice
Phononic
crystal

Structures are discretized taking into account periodicities
Temperatures are prescribed in first and last cells (blackbodies)

Lz

Hot 
Blackbody

Cold 
Blackbody
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Monte Carlo solution of the BTE - initialization

Energy within a cell
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Monte Carlo solution of the BTE - initialization
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1. Sampling of a phonon population (energy bundles) at a given temperature T, according to
dispersion relations (isotropic). Random location of phonons.
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Monte Carlo solution of the BTE – transport 
and scattering

1. Sampling of a phonon population (energy bundles) at a given temperature T, according to
dispersion relations (isotropic). Random location of phonons.
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Monte Carlo solution of the BTE – transport 
and scattering

2. Follow phonon displacement according to their group velocity and boundary conditions

scatt
F

t ¶
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Two possibilities: 
• Free displacement 

along initial 
propagation direction

• Collision with a 
boundary (edge of the 
system, pore, 
inclusion, etc.)

Specular reflection

Diffuse reflection

r(t+dt)r(t)

Free displacement

Diffuse or 
specular
transmission
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Monte Carlo solution of the BTE – transport 
and scattering

2. After displacement (drift stage) “local pseudo” Temperature T* (out of equilibrium) is
computed in each cell of the domain.

T

Lz

t+dt
T*

Lz

All the phonons are displaced within the structure; they carry a part of the energy that 
depends on the local temperature.



Monte Carlo solution of the BTE – transport 
and scattering
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3. Proceed to phonon scattering with respect to the Matthiesen rule, calculation of E and T

å -- =
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process TpTp 11 ),,(),,( wtwt

Lifetimes of scattering processes (Normal, 
Umklapp, Impurity) are derived from M.G. 
Holland for Si and Ge
M.G. Holland, PR 132, 2461-2471
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Monte Carlo solution of the BTE – transport 
and scattering

3. Proceed to phonon scattering with respect to the Matthiesen rule, calculation of E and T
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Monte Carlo solution of the BTE – transport 
and scattering

2. After scattering, the energy in each cell is calculated, as well as phonon heat flux,
temperature is derived from energy.

t+dt

T
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T*

Lz

N

N
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Drift stage

Collision stage

Blackbodies are « reset » to Thot and Tcold
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Monte Carlo solution of the BTE – post 
processing

4. Extract T and F according to the local phonon distribution in the nanostructure

å
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=F
N

i

i
z V1

gzVw!

Silicon nanofilm
Lz = 2µm
dt = 1ps
Nz = 20 cells
40000 time steps
8 cores / 6 hours
Cross plane TC
k = 128.7 W/m K
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Application of MC-BTE tool to appraise 
thermal properties in nanostructures
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Monte Carlo simulations – Nanofilms 1 
Diffuse regime

310 K 290 K 11,8K 3 K

L = 2 µm L = 10 µm

D. Lacroix, PRB 72, 064305, 2005
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Ballistic regime
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Monte Carlo simulations – Nanofilms 2 

Fz

Lz Lx

Wire: Rx = D, Ry = D

Film In-plane: Rx = D, Ry = S

Bulk /film Cross-
plane: Rx = S, Ry = S

Rx, Ry: reflections
D: diffuse
S: Specular

Thermal conductivity in Si vs T; Lz = 2µm In-plane & cross-plane TC in Si film vs Lx
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Monte Carlo simulations – Nanowires 1 

Si nanowire TC vs T

D. Lacroix,  APL 89, 103104
D. Li, APL 83, 2934

Si nanowire TC vs cross-sectionLz

Smooth nanowires

Simulations match experiments, except for very 
thin diameters (bulk limit)
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Monte Carlo simulations – Nanowires 2 

Corrugated and modulated nanowires

Si Nanowires 
with shaped 
modulation

C. Blanc, APL 103, 043109

MC design of modulated nanowires
E. Buitrago, Microelectronic Engineering 97, 345–348
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Monte Carlo simulations – Nanowires 3 
Smooth and steep constrictions
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Rdzd d

max

min

d
dRd =;

Spatial discretization impact

ksmooth < ksteep importance of Lb

C=1014

C=1016

V. Jean, IJHMT 86, 648-645

C is a 
constriction 
parameter
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Monte Carlo simulations – Nanowires 4 

V. Jean, IJHMT 86, 648-645

L

TC in canal NW smaller 
than in single NW with 
the minimal diameter

No significant effect of 
‘canal’ length,

Constriction resistance

Long constriction ‘canal shape’
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Monte Carlo simulations – Nanowires 5 

V. Jean, IJHMT 86, 648-645

Modulated nanowire

4 periods nanowire Increase of period number
leads to a decrease of the
thermal conductivity
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Monte Carlo simulations – Porous membranes 

V. Jean, JAP 115, 024304

Porous membranes/membranes with inclusions

Nanoporous Si
Ge3Mn5
inclusions in Ge

Polydisperse inclusionsMonodisperse inclusions

Lz =250nm

ANR Grant - Mesophon
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Monte Carlo simulations – PnC membranes 1 
Phononic (PnC) Si membranes

R. Anufriev, PRB 93, 045411

‘Staggered’ ‘Aligned’

Good agreement between experiments & 
simulations
The TC is always lower when pores are in staggered 
configuration for a same S/V ratio
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Monte Carlo simulations – PnC membranes 2 

Boundary scattering mean free path as a function of the volume to surface scattering ratio
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In case of diffusive heat conduction, the 
boundary scattering MFP is equal to four times 
volume-to-surface ratio.

( ) ( )4d-a2+hd
4hd-4ha

=
S
4V=ha,d, 22

22

boundh-scat pp
p

L

MC computing, ray tracing like method, million of 
phonons are launched ion one small time-step 
dt#0.1ps

Linear trend, theoretical 
behavior is retrieved for 
diffuse medium as PnC
membranes
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Monte Carlo simulations – PnC membranes 3 

Accumulated TC in PnC Si membranes

T=300K

Bulk : 50% of TC due to phonon with mfp < 500nm
PnC : 65% of TC due to phonon with mfp < 500nm

Extracted from MC computations, the contribution 
of phonon frequencies to the total TC

Phonon transport in those membranes is mostly 
diffusive due to multiple diffuse boundary 
scattering processes

R. Anufriev, PRB 93, 045411
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a=160nm; d=126nm

Angular distribution of transmitted phonons

Hot 
boundary

Cold 
boundary

At low temperature, ballistic transport is either observed for 
aligned and staggered PnC. At room temperature, diffuse 
transport leads to isotropic distribution.

Monte Carlo simulations – PnC membranes 4 

R. Anufriev, PRB 93, 045411
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MC simulations - Disordered porous membranes 1

Aligned Staggered Random

Ordered - Disordered PnC membranes Highly disordered membranes,
With polydispersed holes

(Lx=100nm; Ly=Lz=2µm)
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MC simulations - Disordered porous membranes 2
SEM of DPM Si membranes

Thin membrane : 100nm
Porosity : 25% for S1 and 37% for 
S2

Low thermal conductivity (two 
lasers Raman spectroscopy):

• Plain membrane : k = 60 W/m K
• S1 : k = 19 +/-3 W/m K
• S2 : k = 11 +/-3 W/m K

Complicated geometries that 
can be handled with MC

Pore size distribution
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MC simulations - Disordered porous membranes 3
SEM of DPM Si membranes

1. With the pore distribution, a 
cumulative probability is constructed to 
mimic pore sampling with MC. 

2. Pores allowed to overlap
3. Simulations are done by applying a 

thermal gradient and following 
phonons on membrane of : 0.1µm x 
2µm x 10µm

4. MC calculations are parallelized over 16 
nodes

We derive : Temperature, fluxes and 
equivalent TC.



45

MC simulations - Disordered porous membranes 4

Good agreement 
between Exp and 
MC

Visualisation of 
hot spots on the 
membrane

2D map of temperature and heat flux in z direction
Sledzinka,Nanotechnology 30, 265401



Summary (Pros/Cons)

• Efficient and fast technique to recover TC in various 
nanostructures from ∼10nm to ∼10µm

• Efficient for low to high temperatures, (ballistic to 
diffusive regimes)

• Allows to combine several materials (superlattices, 
nanoinclusions, etc.)

• Accuracy easily controlled through MPI simulations

46

• Limited to isotropic dispersion relations
• Phonon relaxation times provided according to 

analytic expressions (calibration stage on bulk cases)



Improvement of MC-BTE by 
coupling with ab-initio 
calculations

47
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Monte Carlo simulations, ab-initio coupling 1 

The MC solution of the BTE for phonon has a main weakness,
the necessity to have an explicit formulation of phonon
lifetimes of the studied material.

• Idea: replace analytic lifetime expressions of basic
materials (Si, Ge, etc) by the one provided by DFT
calculations

• Use the real dispersion properties of the material
(frequency, polarization branches including optical modes
& group velocities)
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Monte Carlo simulations, ab-initio coupling 2 

DFT calculations: Dispersion properties
& phonon lifetimes 

Discretization of the 
first Brillouin zone on 
a 31x31x31 K grid
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Monte Carlo simulations, ab-initio coupling 3 

The MC-ab initio solution of the BTE for phonons lies on the same principle as
above: discretization, BC, initialization, phonon drift and phonon scattering.

Changes are related to:
• Use of a K space discretization instead of frequency one
• All phonon branches are considered including optical ones
• The scattering term of the BTE is the DFT calculated phonon lifetime

For each K point j, at a given time t, a phonon is sampled in a cell and carries a given
number of modes “𝒏𝒋𝒕” given by the Bose-Einstein distribution

𝑛O& =
1

exp 8ℏ𝜔$
𝑘!𝑇 − 1

MC simulation will compute 
𝑛O& variations due to phonon 
displacement and scattering 
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Monte Carlo simulations, ab-initio coupling 3 
MC – ab-initio coupling procedure

1. Generation of the phonon properties from DFT inputs for each phonon mode in

a given T range : w(Kx, Ky, Kz, p), Vgx(Kx, Ky, Kz, p), Vgy(Kx, Ky, Kz, p), Vgz(Kx, Ky, Kz, p),

t(Kx, Ky, Kz, p, T)

2. Definition of the weighting factor : W that gives the initial number of phonons in

each domain cell : 𝑁K = 𝐾+×𝐾<×𝐾@ × 𝑝×𝑊

3. Definition of the system geometry (thin film, nanowire, …) and of the initial

applied temperatures

4. Initialization of the phonon bundle (location x, y, z) in each cell at the initial stage

according to the prescribed T.



52

Monte Carlo simulations, ab-initio coupling 4 
Group velocities – Si TA branch – DFT calculations
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Monte Carlo simulations, ab-initio coupling 5 
MC – ab-initio initialization

Blackbodies A reference temperature 
Tref is set such as Tref<Tc
Energy carried by phonon
Modes is proportional to 
(T-Tref)

𝑛O& =
1

exp aℏ𝜔O
𝑘!𝑇 − 1

− 𝑛,9P,O& 𝑛,9P 𝐾, 𝑝 =
1

exp aℏ𝜔Q,K
𝑘!𝑇,9P − 1

With index j defined by (Kx, Ky, Kz, p)

Occupation number 𝑛O& is computed for each discretized mode

Energy within a 
cell thus becomes

𝐸 𝑡, 𝑇 = 𝐸,9P +
1

𝑊 𝐾+𝐾<𝐾@ 𝑉/5
3
$8+

R

3
O8+

Q%Q#Q&K

ℏ 𝜔O
1
2 + 𝑛O

&

« 𝐸,9P » is the reference
energy

« i » is the number of 
phonons per mode

« j » is the 
mode index

Th Tc
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Monte Carlo simulations, ab-initio coupling 6 

MC – ab-initio boundary conditions

Cross plane - TC

Th

Tc

Problem with specular BC, we need to find the mode j’ which has the same 
frequency and polarization 𝜔OS, 𝑝OS = 𝜔O , 𝑝O but opposite velocity along “y” 
axis  𝑣;T,O' = −𝑣;T,O

Th Tc

mode j mode j’≠ mode j

Specular BC

ny

Th Tc

Periodic BC

mode j mode j

ny
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Monte Carlo simulations, ab-initio coupling 7 

MC – ab-initio boundary conditions

Cross plane - TC

Th

Tc
Th Tc

mode j mode j’≠ mode j

Specular BC

ny

mode j : (6,14,21,1) ; wj=5.55 Thz
mode j’ : (25,14,9,1) ; wj’=5.55 Thz

mode j’
mode j
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Monte Carlo simulations, ab-initio coupling 8 

MC – ab-initio boundary conditions

Nanowire - TC

Th

Tc

Th Tc

mode j mode j’≠ mode j

Diffuse BC

ny

mode j’’≠ mode j

Phonon can be either :
• Forward scattered (specular like)
• Back scattered (diffuse like)

Frequency and polarization are preserved 
(elastic scattering); forward or back scattering is 
randomly assessed from scattering parameter 
“p” (set or calculated from phonon wavelength 
and roughness)
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Monte Carlo simulations, ab-initio coupling 9 

Calculation of scattering term of the BTE
For each K point, a phonon is sampled in a cell and carries a given number of modes N. 

nbD(K1,K2,K3,p) 
at different T

T1 T2 T3

before Drift

naD(K1,K2,K3,p) at T2*

T1* T2* T3*

naD(K1,K2,K3,p)=0 
at T1*

after Drift
T1* T2*

naScatt(K1,K2,K3,p) 
at T1* & T2*

after Scattering

Occupation number of each 
mode is corrected after each 
phonon displacement 
according to the local 
« pseudo » temperature T*

𝑛"U'"&& = 𝑛"V +
𝛿𝑡

𝜏 𝐾+, 𝐾<, 𝐾@, 𝑝
∆𝑛!W 𝑇∗ − 𝑛"V

Once 𝑛"U'"&& is know, new T and heat flux are 
calculated and next time step is considered
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Monte Carlo simulations, ab-initio coupling 10 
Calculation of T and F according to the local phonon distribution in the nanostructure

å
=

=F
N

i

i
z V1

gzVw!

Silicon nanofilm
Lz = 2µm
dt = 0.5ps
Nz = 10 cells
20 000 time steps
1787460 phonon modes
(31x31x31x6x10)
2 core / 8h

2 5 9303K 297KSi cross-plane TC
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Monte Carlo simulations, ab-initio coupling 11 

Calculation of T and F according to the local phonon distribution in the nanostructure

å
=

=F
N

i

i
z V1

gzVw!

Silicon nanofilm
Lz = 2µm
dt = 05ps
Nz = 10 cells
20000 time steps
1787460 phonon modes
2 core / 8h
Cross plane TC
k = 104.36 +/-3.7 W/m K

Holland’s relaxation time : k = 128.7 W/m K  (isotropic dispersions without optical modes)
Light Underestimation with the TC with MC-ab-initio for 2µm length
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Monte Carlo & ab-initio - applications to 
thin films and nanowires
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Monte Carlo & ab-initio - applications 1 
Thermal conductivity in Si vs T; Lz = 2µm

Cross-plane Thermal conductivity in Si film vs Lz

ü Thermal conductivity variation with 
thickness well recovered
ü Temperature dependence of thermal 
conductivity OK

Diamond and Hexagonal phases studied

Thermal conductivity in Si vs mfp @ T=300K

Applied Physics Letters, vol. 112, 033104
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Monte Carlo & ab-initio - applications 2
Monte Carlo post-processing, mode contribution to Thermal Conductivity

# 10%
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Monte Carlo & ab-initio - applications 3
Thermal Conductivity 
of nanowires

Lz

d

How phonon confinement in nanowires can be addressed ?
• Impose a global specularity parameter p,
• Compute the specularity parameter for all phonons that collide 

with boundaries (Ziman model) : 𝑝 = 𝑒𝑥𝑝 6+XY#Z#

[#
; with d

the average roughness and l the phonon wavelength.

0.4 < p < 0.5 0.4nm <d < 0.6nm
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Monte Carlo & ab-initio - applications 4

Thermal Conductivity 
of nanowires

Lz

d

d = 56nm; Lz=1µm

0.4 < p < 0.5

0.4nm <d < 0.5nm

silicon

D. Li, APL 83, 2934
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Monte Carlo & ab-initio - applications 5

Thermal Conductivity 
of nanowires

Lz

d

d = 115nm; Lz=1µm

0.4 < p < 0.5

0.4nm <d < 0.5nm

silicon

D. Li, APL 83, 2934
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Monte Carlo & ab-initio - applications 6

Thermal Conductivity 
of nanowires

Lz

d

d = 159nm; Lz=1µm

0.4 < p < 0.5

0.4nm <d < 0.6nm

silicon

A. Malhotra, Appl. Mat.&Int., 14, 1740



Summary (Pros/Cons)

• Needs more memory to perform calculations, as compared to
the previous MC model based on isotropic modelling and
analytic relaxation times

• Boundary conditions (specular and diffuse) more complex to
define

• DFT calculations with sufficiently dense K-grid to ensure
accuracy

67

• Methodology that allows to use the real complexity of material
characteristics through their detailed dispersion properties and
the phonon lifetime

• All phonon modes are considered in the MC sampling ensuring
better energy and momentum conservations

• Complex and large nanostructures can be handled



MC-BTE calculations of 
transport properties through 
autocorrelation

68



Autocorrelation & thermal conductivity

69

Project ANR: Spider-man

Purpose: investigate ballistic-diffusive transition 
in semiconductors. Identify key parameters

Tools: Monte Carlo simulations of bulk and 
nanostructures
• Mean square displacement of phonons
• Autocorrelation of heat flux Thermal 

conductivity



Autocorrelation & thermal conductivity

70

Phonon selection (initialization stage)
• Phonon's properties (frequency and polarization) are randomly sampled according a 

cumulative distribution function  at a given temperature 
• At the initial stage, particle position is evenly distributed in a initial domain (box) that 

can have boundary or not (bulk media modelling)

Heat flux autocorrelation
• Once all particle’s trajectories have been computed, the heat flux autocorrelation 

tensor is computed according to the Kubo formalism

Methodology

Phonon displacement
• Particles are displaced according to their group velocity and the time step
• Once displacement is achieved, a scattering collision probability is calculated, and the 

state of the particle is fully partially or not reset
• For each followed particle, heat flux at time t is computed
• Process is iterated until a fixed number of time steps



Energy carriers transport properties
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Gallium Nitride, bulk thermal conductivity

Holland model

BL = 8.0d-25 ; BTU = 6.0d-18 ; 
BTN = 1.3d-12 ; BI = 1.8d-45

L=1.7d-3 ; F=1

Callaway-Debye model

BNL = 4.0d-24 ; BUL = 1.1d-21 ; 
BNT = 1.0d-14 , BUT = 5.0d-20 ; 

Vatom = 46.943d-30 ; G = 8.0d-5

101 102

T (K)

102

103

k 
(W

 m
-1

 K
-1

)

GaN thermal conductivity

total
L
T0
TU
Exp
Exp

101 102 103

T (K)

102

103

k 
(W

 m
-1

 K
-1

)

GaN thermal conductivity
total
L1
L2
L1+L2
T1
T2
T1+T2
Exp
Exp



Phonon trajectories
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Phonon trajectories (5 phonons tracked) in bulk silicon

T=100K
T=300K

Phonon displacements are recorded during MC procedure at each time step (here 100 000
time steps of 1ps). The tracked phonons are at t=0 in a box of volume V=1x1x1 µm (green
box)



t0; event=‘D’

t1; ‘D’

t2; ‘D’

t3; ‘D’

t4; ‘I’

t6; ‘U’

t8; ‘U’

t15; ‘U’

t11; ‘N’
t13; ‘I’

mfp1, w1, p1

mfp2, w1, p1

mfp3, w2, p2

mfp4, w3, p3 mfp5, w4, p4

mfp6, w4, p4

mfp7, w5, p5

Analysis of phonon mean free path 1

73

Objective : 
Investigate mfp L between 
two events that change the 
phonon propagation 
direction (impurity or 
umklapp scattering)

ú
û

ù
ê
ë

é -
-=

),,(
exp1

Tp
tPscat wt
d

Scattering events are function of lifetime t
and time step dt 



Analysis of phonon mean free path 1
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GaN @ 300K - Callaway-Debye modelGaN @ 100K - Callaway-Debye model

Analysis of phonon mfp (over 100 000 time steps of five particle paths) as
a function of frequency and polarization give some insights about
scattering mechanisms and their evolution with temperature.

Lacroix, PRB, 104, 165202



Heat flux autocorrelation of MC simulations 1

75

Using the MC methodology developed in the first section, at each time step we
record the phonon state (w, p) and propagation direction. From dispersions we
have the group velocity, we can thus derive the instantaneous heat flux of
particles “i” at time “t” : q(t,i)

𝒒 𝑡, 𝑖 =
1
𝑉 𝑝 𝑡, 𝑖 ℏ𝜔 𝑡, 𝑖 𝒗 𝑡, 𝑖 𝒲 𝑡

𝒲 𝑡 is a weighting factor defined as the ratio of the theoretical 
energy of the system at T to the sampled energy by MC procedure

𝒲 𝑡 =
𝐸&( 𝑇
𝐸45 𝑡

𝐸&( 𝑇 = i
0

D()*

3
K8=>,?>

1

𝑒𝑥𝑝 8ℏ𝜔
𝑘!𝑇 − 1

𝒟 𝜔 𝑝ℏ𝜔 𝑑𝜔 𝐸45 𝑡 =3
$8+

.+

𝑝 𝑡, 𝑖 ℏ𝜔 𝑡, 𝑖

Green-Kubo formalism reads:

𝑘\,] =
𝑉

𝑘!𝑇<
i
0

^
𝑞\ 0 𝑞] 𝑡 𝑑𝑡 𝑘_,T =

𝑉
𝑘!𝑇<

𝛿𝑡
𝑁K

3
$8+

.+

3
`8+

4
1

𝑁& −𝑚
3
78+

.!6`

𝑞_ 𝑚 + 𝑛 𝑞T 𝑛

With 𝑁K the number of sampled particles, 𝑁& the number of time steps and 𝑀 = .!
+0



Heat flux autocorrelation of MC simulations 2
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GaN @ 100K - Callaway-Debye model



Heat flux autocorrelation of MC simulations 3

77

GaN @ 300K - Callaway-Debye model



Heat flux autocorrelation of MC simulations 4

78

GaN @ 500K - Callaway-Debye model



TC from MC autocorrelation & KT simulations 1

79

GaN : Comparison of kinetic and autocorrelation calculations to experimental data at different 
temperatures

Lacroix, PRB, 104, 165202



TC from MC autocorrelation & KT simulations 2

80

Silicon : Comparison of kinetic and autocorrelation calculations to experimental data at 
different temperatures



TC from MC autocorrelation & KT simulations 3

81

Diamond : Comparison of kinetic and autocorrelation calculations to experimental data at 
different temperatures

Overestimation 
of k

New k with 
bounding box

V = 1mm3



TC from MC autocorrelation & KT simulations 4

82

Results for : Si, Ge, GaN & Diamond

Good reliabilty
for bulk TC 

evaluation !



Perspectives on MC autocorrelation simulations 1

83

First simulations were mostly done on “bulk materials” (except for C diamond),
i.e., there is no boundary in the simulation domain and particles were free to
move in an “infinite” structure. In other words, there is no boundary scattering.

Open domain : no boundaries

Closed domain :        boundary
scattering lowers phonon mfp

Nanowires, nanofilms, 
nanodots modelling possibilities ?



Perspectives on MC autocorrelation simulations 2
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Nanowire modelling
x

y

z

• Isothermal system; Lx=Ly=102nm ; Lz=10µm
• Diffuse boundary scattering in x and y directions
• No boundary scattering in z direction

T=300K



Perspectives on MC autocorrelation simulations 3

85

Nanodot modelling

x
y

z

• Isothermal system; 
• Box size : 20nm < Lx=Ly=Lz < 5µm
• Boundary scattering in x, y and z direction,

x
y

z

V=20x20x20 nm3

V=5x5x5 µm3



Summary (Pros/Cons)
• New methodology that combines MC and Green-Kubo

formalism
• Efficient for high temperatures and/or strongly scattering

nanostructures
• Isothermal simulations (no thermal gradient)
• Access to the conductivity tensor

86

• Needs more memory to perform calculations
• Improvement needed to recover other properties like thermal

diffusivity
• Currently based on isotropic dispersion relations
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General summary and future 
works



Summary
• MC solution of BTE offers a good flexibility to model heat 

transport in different kind of nanostructures close to the 
real ones, from ∼10nm to ∼10µm

• Computational cost is reasonable (some hours to max 1 
week)

• Possibility to include real material dispersion properties 
(by DFT or through models)

• Gives transient information on heat transport
• Gives spectral information on phonon contribution to 

thermal properties
• Allows “multi-material” modelling (interfaces, inclusions, 

etc.)

88



Improvements, perspectives
• Coupling with other heat transport mode (radiative 

heating)
• Modelling of time modulated heating
• Coupling of MC methods for BTE solution to MD 

modeling (interfaces, inclusions)
• Coupling of MC methods to AI tools (optimization of 

nanostructured devices)
• Gives spectral information on phonon contribution to 

thermal properties
• Allows “multi-material” modelling (interfaces, 

inclusions, etc.)

89
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MC-BTE calculations for TE materials
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Thermal conductivity of Bi2Te3 and SnSe using 
Debye-Callaway model and BTE

Phonon collisions

Thot Tcold

å
=

=F
N

i

i
z V1

gzVw!

Collision probability

ú
û

ù
ê
ë

é -
-=

),,(
exp1

Tp
tPscat wt
d

å -- =
process

process TpTp 11 ),,(),,( wtwt

Heat flux evaluation using Debye - Callaway model 
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Relaxation time

Relaxation Time ApproximationBTE

Data can be found in the literature for bulk materials but 
few ones exist for thin films and complex geometries

𝑓 is the phonon distribution function



Phonon dispersions in Bi2Te3 and SnSe
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Phonon dispersions in SnSe – fit a, b, and c axisPhonon dispersions in Bi2Te3 – fit a, and c axis

vg = dw/dk𝝎𝑻𝑨 = 𝒄𝑻𝑨𝑲+ 𝒗𝑻𝑨𝑲𝟐

𝝎𝑳𝑨 = 𝒄𝑳𝑨𝑲+ 𝒗𝑳𝑨𝑲𝟐

Frequencies, quadratic fit Group velocity



Scattering lifetimes and Relaxation time parameters
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𝐵! ≈
ℏ𝛾"

𝑀𝑣"𝜃

𝐵# ≈
Γ𝑉
4π𝑣$ + 𝐴

K1

K2

K3 = K1+k2

K1

K2

K3

K’3

G
Impurity atom

Phonon-boundary
scattering

Impurity scattering 𝐵BUmklapp scattering 𝐵/Normal scattering 𝐵.

𝐵%& ≈
𝑘'(𝛾&"𝑉
𝑀ℏ$𝑣&)

Phonon scattering mechanisms

𝜏 = 𝑐𝑡𝑒×𝑓(𝜔, 𝑇)

𝐵%* ≈
𝑘'$𝛾*"𝑉
𝑀ℏ"𝑣*)

Intrinsic to MC 
solution of BTE



Thermal conductivity of Bi2Te3 along a and c 
directions versus temperature
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Bi2Te3 Γ- X a-axis (cross-plane) Bi2Te3 Γ- Z c-axis (cross-plane)

Γ = 6. 10#$

Γ = 9. 10#$

Increasing 𝜞 decreases the thermal conductivity with a weaker effect at high temperatures

In the 𝜞- Z direction the thermal conductivity is lower than along 𝜞- X direction

P. Al-Alam, PRB, 100, 115304



Thermal conductivity of SnSe along a and c 
directions versus temperature
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Study of Grüneisen parameter ϒ effect on TC
𝜸 Related to the vibrational frequencies of atoms

that changes by varying the volume of a solid

Recover TC 
obtained from DFT 
and experiments

𝛾= <
=
>?
@!

Volume thermal 
expansion 
coefficient

Bulk
modulus

Density

Macroscopic
thermodynamic

definition



Thermal conductivity of SnSe along a and c 
directions versus temperature
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𝛾 = 1,9

𝛾 = 1,7
𝛾 = 1,2

𝛾 = 2,13

𝛾 = 1,4

𝛾 = 2,3

SnSe, a-axis

Bulk SnSe, Lz = 1µm

Extra low TC 
verified by 

samples with
lower

densities

The variation of 𝜸
allows to recover TC of 
bulk SnSe on extended

temperature range 
with good agreement 

with the literature

SnSe, b-axis

SnSe, c-axis

P. Al-Alam, PRB, 100, 115304



Film cross plane thermal conductivity versus 
thickness for Bi2Te3 and SnSe
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Bi2Te3 thin film, 20 nm ≤ Lz ≤ 10 000 nm SnSe thin film, 20 nm ≤ Lz ≤ 2000 nm

Lack of data for comparison in the literature

(d
ot

te
d 

lin
es

)

50 % reduction

60 % reduction

* 0,34 W m-1 K-1

*0,4 W m-1 K-1

* M. Takashiri et al., J. Appl. Phys., 104 (8), 2008

Lz

Th Tc

Φz
z

y x

P. Al-Alam, PRB, 100, 115304



Nanowire thermal conductivity versus side length 
for Bi2Te3 and SnSe

100

NW Bi2Te3, Lz = 1000 nm NW SnSe, Lz = 1000 nm

Lz

P. Al-Alam, PRB, 100, 115304



Nanowire thermal conductivity versus side length 
for Bi2Te3 and SnSe
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Bi2Te3, Lz = 1000 nm SnSe, Lz = 1000 nm

Obvious reduction in TC due to phonon confinement in good agreements with 
experimental data 

1
𝑘%&

=
1
3
(
1
𝑘'
+
1
𝑘(
+
1
𝑘)
) 𝑘*& =

1
3
(𝑘' + 𝑘( + 𝑘))

Upper bound, Arithmetic meanLower bound, Harmonic mean

Polycrystalline model: Composed of large number of grains where the orientation of the atoms
is different for each grain


