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Context

Transport problem: particle, charge, spin, energy, heat...

« 1. From material (S.C.) properties to device (transistor...) performance
Reciprocal space — Real space (complex geometry)
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» Which formalism is relevant? Deterministic or stochastic solution?



Stochastic solution: numerical integration

Monte-Carlo integration is the most common application of Monte-Carlo methods

Basic idea: Do not use a fixed grid, but random points, because:

1. Dimensionality: a fixed grid in D dimensions with N meshes requires NP points
2. The mesh size must be chosen first, with appropriate criteria

Example of stochastic solution: calculation of 7

Consider a circle of radius 1, enclosed by a 2 X 2 square
The area of the circle i1s 7 r<= 7
The area of the square is 4

Generate a large number of uniformly distributed
random points (x,y) with x,y € [-1,1]

N, ... 1s the number of points in the circle

N

fota

;18 the total number of points

7Z'
4 N, total

Then (Law of larges numbers)



Random number generators

How to generate many random variables satisfying all randomness properties of the problem?
« Distribution of R € [0,1] : Uniformity is not sufficient
»  Other issues are the period of the generator and the non-correlation between numbers

«  Example of generator of R € [0,1]

Starting from a seed ]\/;

Recurrence relation: N, = AxN; +C Witheg 4=5,C=7,P=2
I = mod(Nj+1,P)
Nj+1 =1

R =

1
E P is the period of the generator




Random number from any distribution

1

UNIfOrM @ e e e e e e e e e e e e e e e = - \

deviate in F(y) = '!(\, p(y)dy

X

<« p(y)

0

The transformation method: .
deviate out

1. Given a normalized distribution p(y), the cumulative distribution function (CDF) of p(y) is

F(y)zjoyp(w)dw

2. Drawing a number ) according to p()) (shaded area) amounts to draw uniformly F()’)
by construction: 0 < F(y) <1

3. We draw x = R € [0,1] and determine y so that x = F())

» Using a uniform distribution for x and the inverse of

4. Therefore: = Fl(x
Y () the cumulative (relevant) distribution function F 5
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Distribution Function

Classical approach (quantum properties are neglected)

One can specify at each time ¢ their position 7 and their wave vector k (or their

momentum 7 = hk)
The system is fully described by the distribution function f (7, E,l‘)
which is the « probability » to have an electron in state k at position 7 at time ¢

— All physical quantities A and fluxes related to the electron gas are deduced from this function:

: n(f,t)=2f(f,l€,t):jp(k) 1 (7. k1) dR
L [0 =D (R) (7R = [, (R) (k) 1 (7Rt d
e.qg. k
A7) = Y A(R) £ (7.) = [ 4() p(k) £ (7.F.0)dR
| Tu(0)= Y o (R)a(R) 1 (k1) = [9(F) A(F) p (k) £ (7..t)d

» Violatation of uncertainty principle ? Eulerian description ?



Distribution Function and density operator

Classical approach : Distribution Function

Quantum approach : density matrix

— All physical quantities are deduced from this density matrix:

p= Zpi i) v ] p(r.rtt)=(r|p(r)[r') = Zpi (Dw: () (1)
{n(r) =p(r,r)= p; (v (r)y; (r)
—> ) ) i ,. ,.
(A) = (9] A|9) = Tr(Ap) = Tr(pd)



Boltzmann Transport Equation (BTE)

Problem: Time-evolution of the distribution function f(x,,)

e AP L. o
f(x»k»f)—f(x (dtjdt,k (dtjdt,t dtj +az

of dxdf dkdf _of
ot dt ox dt ok ot

coll

coll

o __ o Fo o
ot ox hok o

coll

Generalization 1n 3D space:

BTE in 6-dimensional
phase space




Boltzmann Transport Equation (BTE)

in-scattering ‘\out scattering
s out -flow dk

f(k+dk)—
k+dk ___________ d rdx -
in-flow Ly -, out-flow dr v
dx dx )
f(x)= f(x+de)= dk F
—=— = hk
k df 1 | dt e (p )
rin-flow
| dk
i f(k); i
! [ . X
X X+ dx

in and out
scatterings

During ot, f increases by o f
—> Conservatlon of the number of particles in the small volume dx dk :

L Sf [f f(x+dx)] f(k+dk)] Fof
5t dx dk Oty

BTE in 6-dimensional

phase space

Q> @:_v'ﬁrf_%'ﬁkf_i_@
coll 10




Classical vs. Quantum
transport Equations

oH : ()H
dp? ﬁ B

— Conservation in a classical system via Hamilton’s formalism ¢; =

of _ = F - OH Of OH Of
~—=—V-V_ f——-V & = —
o I h o Z (éhoz dq;  Oq; 8102-) !
of B

m +{H,f}=0

— Conservation in a quantum system (correspondence principle)

dp ?
_:__H

0
» But in transport the main issue is : i

Ot

coll
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Collision term - scatterings

A
k'+dk L
'
in-scattering k', x out-scattering
k' - —
““““““““ S; (k, k’) : transition rate
L from an occupied state k
to an available state k’
k,x
kil
X X+ dx "X
fl? EEdk' If 1€/€ dl?}:@f
coll |ZJ‘ ) \
YT ~ .
in- scatter/ng out-scattering collision operator

In non-degenerate fermion gas: max f(#,k,t) > 0.1

L af B Uf ]SZ_(;‘(",/}')d/?_jf(l?)[l—f(l?)]S,-(l?,l?)dl?}

It turns out to be a non linear tem...

coll
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BTE solutions: At thermal equilibrium

o of
Ot ot

O At thermal equilibrium: Equilibrium distributions are solutions (Boltzmann, FD, BE)

:_V'ﬁrf_— kf+

coll

Eg.: Electrons obey the Fermi-Dirac statistics:

- Lo\ 1-1 E, is the Fermi level
f(F.k.t) = fy (F.k) = 1+exp{E(r’k) Ef} {E(F,E)zEp(F)+g(E)

6T P, \
. Potential energy  Kinttic energy

Total energy (bottom of CB)  Ex:
_ 2
=0 (F) = (hk)

%

2m

of
O At thermal equilibrium: ——

ot

coll

Hf s, (¥, k) ' - jfl%’ l?l?)dl?}:Cf

coll
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Linear response (close to equilibrium regime)

L W— & — & 1 hk)? ’
= At eq.: fo(F.k) = exp (—I{BT ) o = Em(vz) = (2-_71)1 2>f,(r,v(k)) = exp (_?S;)T)
= linear response: ~
X AT) = x,v)+ o~ >>
- Steady state gj(c 2sz fO(dfl )+ A= fo>fi
- i o — R — 3D —
Small perturbations T dm " e
Y o, N
Ldv dk dv

<= Shifted gaussian distributions? IE
Velocity distribution f(v(k)) Equilibrium: /- * N
f('l?) = fo + fl
_ m(v — (v))?
Bl W

‘ Close to equilibrium:
13 \ (v) #0, > (v)

I
20 4o




BTE at low field: Drift term derivation

—>

Electric force: F =

Current density: J (7 :—q”jﬁ lg 77 Vv lg ( )d3k with  fi = f = fequi = f = fo

Assumptions:

(i) Non degenerate N-type semiconductor
Parabolic and isotropic energy band (constant and isotropic mass)
i) Stationary regime (of/ot = 0), without generation
) ry regime ( ) g ol S _f

v) Uniform doping and temperature (no gradients in real space) Ot | o 7(5) 4

(i
(i
(iv) Relaxation time depending on electron kinetic energy &
(
(vi) Uniform, constant and low electric field (< 1 kV/cm)

i)+ )=~V 1 Fedlog
h T
. - Ef—EC—E \
0= ilE)en LN o ohg,
kgT
V)= f= fo+ fi = fo ) ) ’

Thus, using (iv) fi=-q7(¢ )fo E-V so szqszx jjjr(g)fo(é)vi n(E)a”lg

15



BTE: solutions

—

oF - . F_  of
——=—V-V [ ——V [+
o o/ h 24 ot

O At thermal equilibrium: Equilibrium distributions are solutions (Boltzmann, FD, BE)

coll

O Close to equilibrium: BTE =» Drift/Diffusion eq., Hydrodynamic model

O Far from equilibrium the shape of fis unknown !

Complex (linear ?!) PDE with 7 degrees of freedom t,x,y,z,kx,ky,kZ
Even with simplification in the real space the direct discretization leads to huge Matrices

16
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Dispersion: Electron in Silicon

Energy 300K E?z 112 eV
‘ E =206V
E =126V
E_=0044 eV
E =346V
E,=42eV
\‘M_
-
Eﬂ El"l
'S E‘-
<100> |Ex |, <1115
] ’ Wave vector
E. ' /f \Heavy holes
/ Light holes
Split-off band

hitp://'www.ioffe.ru/STA/NSM/Semicond/ Si/Figs/12 1.gif

Analitytical modeling:
Non parabolic and anisotropic modeling

Pk k2 k2
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Pop, Eric & Goodson, Kenneth. (2022). Self-heating and scaling of thin body transistors /.
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Collision term — scatterings

1 2 '

Transition rate: S; (k,k ) — <k
(for mechanism /) h /‘
matrix element of H,

*>‘2 pp O(E'—E) (Fermi golden rule)
k
DOS (spin...)

Fermi golden rule, main features:
= 1st order, time dependant, perturbation theory,
= Scattering between two Bloch (plane) waves with momentum k and k’ (conservation OK

but real space ?) ¥ (r)=1u, (r) ™"

= Time between two scatterings in the limit: t —« (to ensure energy conservation),
» Independant scattering mechanisms.

For electrons: possible collision mechanisms (collision = interaction = scattering):
- electron-phonon scattering
- electron-impurity scattering @f
- electron-electron scattering (difficult ) __, ¢ (/}’,]}") ., =
- alloy scattering (in SiGe, AlGaAs,...) ot

coll

» But matrix element H, ?7??? .



Pertubation potential and matrix element

Evaluation of the coupling constant D

* Electrostatic force (polar material): physical models exist

2 2
— acoustic intravalley (piezoelectric): D, = 2\/28132( 2q 2} g, = ’ ek ”T
& q +qS & B

(P, = piezoelectric Const, ¢, = inverse screening length)

/2}\2 2retho| 11
— 5 —
q “wo
(&, @and gy = high frequency and low frequency permittivity)

— optical intravalley (polar optical): ‘</€' Hop

* Deformation potential D,: empirical paramters

AE =Dy -u (Energy change associated with a displacement u of an atom)

q=k'-k
— optical/acoustic intervalley: _ _ : :
(large q) hw,=Const D, =D+ ¢<q +... with Dy eV/cm
— acoustic intravalley: ho =hv. g Dq Z% +D,.q with D ineV
(small q) q s ““

sound velocity

L, We have all needed information to calculate the electron-phonon scattering rates

20



Electron-phonon scattering

S (k,k')=
! ( ) fi
— the energy of each mode «, is quantized according to:
1
E= ha)q Ny +
2

— the quantum of energy is a boson particle called phonon, whose number is given by:

1
n. =

q [ha)q]
exp| —— |1
kg T

General expression for transition probability per unit of time from k to k* (per unit of volume dk')

/E}f py S(E'—E)

H,

h 1 2 1 1 _
S k. k') = D k.kK') |n.+—*—|06(EF'-EFhw
o (K= T DG [y o )
N + : emission
dependent on {_ . absorption
phonon process '
where O is the mass density Dq is the coupling constant

2

G(k,K')= j dr uy, (r) uy (r) exp[iG-r]| is the overlap factor
cell 21




Electron-phonon scattering

Evaluation of the overlap factor G (k,k')= j dr u:;. (r)u (r)

cell
* Electrons:

— intravalley process in I" valley (GaAs): g(k,k’) =

2
[(1 + ozE)l/2 (1+ azE’)l/2 + cz(EE’)l/2 COS «9}

(1+2aE)(1+2aE")

— intravalley process in X valleys (Si):
G(k,k') U constant [] 1
— intervalley process:

* Holes:
— intravalley process: g(k,k’) = i(l +3cos? «9)
— intervalley process (hh«lh): G(k,k')= gsinz 2]
4



Electron-phonon scattering in Si

g f
1 o—
i e N ;Jm::};;‘}___ o X2
typlcal fTO-51.9meV = i
31.9me
phonon
spectrum < | LA-463meV
Q

(along E ) |
1 direction) w fTA-21.9meV

oLA-18.8meV

oTA-11.4meV
0 = |
(a) Wave number (m™) (b) Tave number (m™") % 10°

Classification of phonon processes:

* 2 physical mechanisms of interaction:
- Deformation potential (all SC)
- Electrostatic force (polar SC, e.g. GaAs)

* 2 types of phonon mode (branche):

- Acoustic modes
- Optical modes

* 2 types of transition:

- intra-valley (small q)
- inter-valley (large q)

23



Monte Carlo method: example of scattering rates (1)

Electron-phonon interaction by deformation potential coupling

* Acoustic intravalley scatterin -l
g | —lexp| 2% )y | LKaT
— small energy and small wave vector phonon = B hao,
hwy = hvgq

— the exchange of energy is neglected (elastic approximation, £' = E)
and both emission and absorption are considered through the same process

2 2 2k 2 2
S (K.K') = kgl Da - 6(E'-E) with E(l+aE)= G S
472- ph V 2m0 ml mt mt

A jSac k k)dk' — change of variables:

K —>E0,p  dk=J(E0,p)dEdOdy

3/2 5 N\-32
J(E,9,¢)=J§(@j (1+2aE)\/E(1+aE)sin9[Sln 9 4 co8 9}

h? m, m
2. (E)= j Suc(E.R) J(E.0.0)dEdOdgp
i ()= s w32 D2 (1+20E)JE(1+ aE)
T ph




* Intervalley scattering

Monte Carlo method: example of scattering rates (2)

Electron-phonon interaction by deformation potential coupling

zero order process: Dq = DO

(Z;, possible final valleys)

: n o D 1 1 , - + : emission
Sivo (k,k ) = Ziv g 5 , |:nq + E + E:I 5(E —E+ h(()) {_ . absorption
- phao;, : P
Z 1 3/2 2 [ 1 1} _ — _
A (E)=—"F— Mmnre Dy |n, +—x2—||1+20(EFho EFFho)ll+alEFho
vy ( ) \/572_ ,Oh3 a)iv DOS =0 q o) |: ( ):I \/( )( ( ))
100 example: Si (7= 300K)
- intravalley acoustic
oA I . o D,.=9eV
5 102 g3 intervalley emission___ D,y =3.4x10% eV/cm
i ST intervalley (A-A) phonons:
£ * gl hw,=11.4meV
2 10! .
= 3 : : . E g2 hw, =18.8meV
32 5 : g3 intervalley absorption : — ¢3  ha, =632 meV
Lo i | fl 7o, =219 meV
L by e e e e e
0 005 01 015 02 025 03 g ho, =46.3 meV

25



Electron-impurity scattering

* For 1 ionized impurity: L, = Debye length
(Brooks-Herring model) 4 o = screening length

e exp(—-r/L
Hez—imp:Ucouz(’”):4 ( /D) LD:L: gszT
\/ e’ n

TE r
qs

exp(—r/LD) accounts for screening effects due to other electrons n = electron density

k
L1 1 € 1 , o = e s -,

%Sel—imp(k’k):_ 2 2 25(E _E) g=k —k ,k'|=lk AL
VAar h ¢ (q2+q2) L
’ qzzk'—k‘ =2k*(1-cosh)
elastic process £ —F
" For N,,, impurities: N, , = N,,, V

’ NdO 64 1 '
S W 2 gy T
qd T4

26
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Solving the BTE for device simulation (in frozen field E)

—

%:-vﬁ,,f—%ﬁkﬂ Uf 5, (k) d*F - jf 5, ( /E')df‘l?}

Starting from an
* initial solution
* boundary conditions

How to calculate the time evolution of the distribution function finside the device with a
constant electric field (frozen field?

I —

Indeed, the BTE is a rather complicated integro-differential equation =» direct (deterministic)
solution is complex

- simplifying approximations of f. drift-diffusion (DD) and hydro-dynamic (HD) approaches
- statistical solution: Monte Carlo methods (MC)

28



The particle Monte Carlo method

@:f(l_" k t) — assembly of individual particles

carrier trajectory:

& Statistical solution

scattering rates /”ti(E) =—> | random selection of

(Monte Carlo algorithm)

—> {

P
'.4.':‘

succession of free flights
interrupted by
instantaneous scatterings

- time of free flights ¢;
- type of scattering i

- effect of scattering (4E, 6)

29



Equivalence between BTE and particle MC trajectories

scatt

|
05 f,
ot

* Summing over n = BTE is recovered

scatt 30



The particle Monte Carlo method

‘F~ Statistical solution: particle Monte Carlo method
- f(7.k,t) —> assembly of individual particles
* 1 particle f(t) E(t)

* N particles allow us to reconstruct f 7okt

— no complicated equation to solve

Z5rr kk())

— same physical (or even better) content as the deterministic solution
— complex scattering mechanism are easily implemented

— suitable for device simulation (even in 3D)
— no assumption about f

— OK for NL problem

scattering rates /”tl.(E) —>

random selection of

[
—> {

(Monte Carlo algorithm)

carrier trajectory:

succession of free flights
interrupted by
instantaneous scatterings

- time of free flights ¢;
- type of scattering i
- effect of scattering (4E, 6)

31



The particle Monte Carlo method

1 particule is characterized at time t by (?,E)

Problem : determination of E(t) and ?(t) under the action of forces and scattering events

Requires

—

A (k) = scattering rate of interaction process i

1 — —
= probability per unit of time that an electron in state k scatters to any state &’

by an interaction process of type i

2, (k)= |5, (k.F") d

32
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Monte Carlo method: selection of free-flight duration

1. Suppose /1t Z/I = Const = /4,

Consider n; = population of electrons that have not experienced any collision since ¢ = 0
(CF = Collision-Free)

Each electron having the same scattering rate A4, the time rate of change of n is:

dner ==y ncr = nep (1) =ner (0) exp(—4g 1)

dt

— The probability that an electron has a free flight (no collision) during the time ¢ is therefore:

TR

— The probability that an electron suffers a collision during the time interval dt is:

Ao dt

= The probability that an electron suffers its first collision between ¢ and ¢ + dt is:

P(t)dt =exp(—Ayt)x Ay dt

34



Monte Carlo method: selection of free-flight duration

t
The probability that the free-fight time is less than #; is: | R, = R(tf) :j ! P(t)dt

of course we have: R(oo) = j P(t)dt =1
0

To select #,according to P(¢)

=
To select a random number Rfuniformly distributed

between 0 and 1, i.e. according to P.(R) =1

P.(R)dR=P(t)dt

Ry Ly
j- dsz P(t)dt = R;=l-exp(-At,)
0 0

SN Ly :_III(R}) where R} =1-R;




Monte Carlo method: selection of free-tlight duration

2. BUT 4, (E Zﬂ is not constant
. . . . A
solution: we introduce a new interaction A
——> fictitious interaction: self-scattering /1SC ( E) 2“0
A (E)+ A, . (E)=Const= &
tot ( )+ sc ( ) = (onst = 2“0 ﬂ'tot
» E

(if selected this interaction has no effect on the electron state)

36



Monte Carlo method: selection of scattering event

* Type of scattering: after each free flight, the electron undergoes a scattering event

7 of which type ?
) ‘ ko (to+15)
ko (to) p (t n ) L, selection using a random number R uniformly
AR distributed between 0 and 1:

0 81 g2 8i-1 8i 1

— in this case the scattering process i is selected

37



Monte Carlo method: selection of scattering event

* Effect of selected scattering: deviation of the wave vector and possible energy exchange

‘) Eo(foﬂfl)

ko (10) k, (to +t, ) { in case the case of phonon process: E' = E+ ho

q
in the case of other processes: E'=E

.J.S(EE 6,0)J (E.0,9)dE'sin® d6 dp = A(E _[desmejdgoB 6,0)

S

](6? ,(ps) = d931n9jd¢3 9 (0) selection of 6, and ¢, with random numbers R,and R,:

0 0

.................................................................. 1 2
i case of isotropic scattering: 5 & ( 0,)= ]((9s>2 7[)) Ry |- 6
: : 7,27
E{P(HS):(I—COSQS)/Z {COSHS:I—2R9 X 1(6,.0.)
i = : 52 Ps

- = By =R, — @
\Ple)zazn BT ()1 0,27)
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Transport Monte Carlo simulation

Velocity-Field characteristics in uniform material — Stationary transport
(equilibrium between perturbation and relaxation effects)

2 107
~ 1.5107 i
£
L
@ 1 107 B :; vsat ~ 107 Cm/S
s
S 5106 Si |
0 | | | | |
u (GaAs) = 7000 cm?/Vs 0 5 10 15 20 25 30
u (Si) = 1500 cm?/Vs Electric Field (kV/cm)

% Extraction of intrinsic transport parameters
(mobility, relaxation times, saturation velocity,...)




CNT: Transient behaviour

E 1 = Response to a step field
= Time evolution of average electron velocity
(=0  Timet n =34, E = 60 kV/cm

1103 e 10,
—~ I | ?
£ 8107 180 &
- Subbands 1 - %
5 6107 =00 o
o @)
© : ] <
> 4107 N I | | B =
= - — =
o N ~ =
-AS» 2 107’ Subbands 2 ; 20 E
é) i Subbands 3 N
e () =

0.1 0.2 0.3 0.4
Time (ps)

— Transient effect during 0.1 ps before reaching the stationary state
—> High Velocity Overshoot : v, = 7.8x107 cm/s for n = 34
v.,.. =3.8x107 cm/s

stat
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Solving the BTE for device simulation

0 I F
i—_" Vif=—Vif+
ot h .
l
([ =
Boltzmann Poisson
Equation Equation
—

=

div(e.E) = p(f) -

- distribution of forces F = —eE by solving Poisson's equation

Direct solution of the Poisson equation

statistical solution: Monte Carlo methods (MC)}

41



Monte Carlo method: flow chart

For the simulation during
a time ¢,;,, of a device
containing V,,,, particules

(N,

part

initial conditions, t; =0

is not constant) ty=1;+ At

possible injection of new particles

solution of the Poisson Equation

t;=1;+ At | | Monte Carlo simulation of particle
trajectories (N,,) between t; and t;

calculation of quantities of interest

no tf: tsim ? or
convergence
reached ?

yes

END



MC: sampling

([ =
Boltzmann Poisson - N -
Equation Equation div(e.E) =p(/)

/’\//

Spatial discretization : —max ox = Debye length
= screening length

I = 1 |ekgT 5 = electron density
D~ 2
d \/ e’ n

- Time discretization : _max ¢ = dielectric relaxation time

(or plasma oscillation)
S €o8sc  €o8sc
L= =
GO qNDMn

43



Space- and time-discretization issue:
Debye length and Dielectric relaxation time

Consider an N-type homogeneous region

Equilibrium density: 19 = Np Electric field: E =0
Under equilibrium:

Conductivity: oy =¢gny u,

Small local desequilibrium: n(x,t) =ny + An(x,t)
= An electric field builds up to restore the equilibrium according to the continuity equation:

8n(x,t) _ l 6J(x,t)

ot g Ox
- Gn(x,t)
where the current density is: J(x,t) = JOE(x,t) +q D, ——=
X
and the electric field obeys Poisson’s Eq.: 8E(x,t) = 9 (no — n(x,t))
Ox Es €0
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Space- and time-discretization issue:
Debye length and Dielectric relaxation time

By neglecting the second order terms, these 3 equations lead to:

2
on(x,t) _ 00 ()= D, 0%n(x,t)
Ot £y £ Ox?
* Time desequilibrium — 8n(x,t) =90 n(x,t):> n(x,t) = 1y exp{—L}
ot Es 0 Do

_Eséy) &8

Tp = Dielectric Relaxation Time
o)) q Hn Ny

g &y kpT 821’1()6,2‘)
oo q>  Ox?

* Space desequilibrium — n(x,t) —

&s &0 kpT
Lp :\/ - 20 5 Debye Length
q "o
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Debye length and Dielectric relaxation time

[
S
-

4800

Debye Length (nm)
S

Dielectric relaxation time (ps)

E 9600
1 F
1015 1016 1017 1018 1019 1020 1015 1016 1017 1018 1019 1020
Doping Concentration N (cm?) Doping concentration N (cm?)
We have to satisty: Ax<Lp and At <7p
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boundary conditions

Device = open system for which appropriate boundary conditions must be applied

1. Boundary conditions for the solution of Poisson's equation:

V..
bias * on nodes adjacent to a metallic contact, the electrostatic potential

/ is fixed:
V(inode) = Vbias

<4 «— *on other device boundaries, the normal component of the electric

field vanishes:

=—=0
dx

Ly

2. Conditions for carrier injection into the device:

*in the cells adjacent to the ohmic contacts, the thermal equilibrium

V..
bias / conditions are assumed to be recovered:

n=Np or p=N,

before each new time step iteration, this condition is checked and

if necessary the appropriate number of electrons is injected. The

wave vector of injected carriers is randomly selected using Fermi or
(if non degenerate) Maxwell distribution.
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Device Monte Carlo simulation: particle trajectories

N-channel MOSFET

source gate drain

\ | /

red dots: electrons
green dots: holes

% Possibility to make movies of particle motion in the working device
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Electron transport in semiconductor nanodevices
using the Monte Carlo method

1. Stochastic solution

2. Boltzmann Transport Equation

3. BTE Inputs: Dispersion and Scattering

4. BTE Solution: Particle Monte Carlo method

5. BTE Applications and Examples

Summer School MONANOT, Frejus, May, 2022 — Jérome Saint Martin, Philippe Dollfus
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Conventional MOSFET architecture

Gate Oxide (7x)

——

Drain
]

N, <

L¢

P-type Si (N,)

»
Ll

Np

Short channel effects:

electron injection into
the channel is not only
controled by Vg

but also by Vg

4 Potential (at given V) -

Conventional Bulk MOSFET

L

Source-drain direction, X

»
L

X

l increasing Vpg

A[D
//”” i
Vs =1V
Vos =05V Vps
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Conventional MOSFET architecture

Gate Oxide (7x)

ﬁ Drain
I

N, < > N, X
D LC D

2 I

P-type Si (N,)

Conventional Bulk MOSFET

To control short-channel effects when reducing the gate and channel lengths
in deca-nanometer transistors one needs:

N

- reduced 7, but then gate tunnelling leakage current occurs

- higher N,, but then: - transport properties are degraded

- sensitivity to doping fluctuations

- reduced Xj, but then access series resistance increases dramatically

Needs for new materials and new device architectures
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New MOSFET architectures on SOI substrate

Ultra-thin undoped channel & Multiple-Gate transistors

Single-Gate (SG) Triple-Gate (TG) W,
Double-Gate (DG) Quadruple-Gate (QG)
undoped channel .................. = improved transport properties & lower fluctuations
thin channel (7Ti; <10 nm) ..... = improved control of short channel effects
multiple-gate ...................... } — less urgent reduction of 7},
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Nano-scaled DG-MOSFET

D,,~=4.46 ¢V
L,=2 MG
’ G~ 2> mm R Vop=0.7V
‘ BT (/. s he supoly voltage

T,=12nm | SiO,

I5;=5-10nm 5 x 1019 cm? 2x1015 cm3 5 x 1019 cm3
T,=12nm ] Si0,

< >« N >
L¢=25nm L-=15nm  L,=25nm

For comparison: similar design of SG, TG and QG transistors
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Current /,, (A/m)

Multiple-Gate MOSFETs: |I;-V ;5 characteristics

L.=15mm&L;=25nmm & T, =5 nm

Vos = Vpp=0.7V

2000 7\ T T T T T ‘ T T ‘ T T ‘ T T T T ‘ T \7 104 g T T T T T T T T T T T T [ T T
* * 103
1500 - . g 102 L
< -
L
1000 + 1 -
E 100 E @ g
g 10-1 ;
500 - . 5 7
- 10-2
) et e wuu\HH\HH\HH\H 1()-3:”‘\“‘\”‘\“ \
0O 0.1 02 03 04 05 06 0.7 -0.2 0 0.2 0.4 0.6
Gate Voltage V¢ (V) Gate Voltage V¢ (V)

increasing the number of gates = { " higher [,
* lower [ g




Conduction Band (eV)

04 .
0.2

0.2
0.4
0.6
08"

Multiple-Gate MOSFETs: Short-channel effects

L.=15mm&L;=25nmm & T, =5 nm

Single-Gate Quadruple-Gate

NN
S NN B
T T 1 ‘ T 1

1

.o

(\®)
\

Conduction Band (eV)
=
~
T ‘ T T T

1

<

AN
\

N T R B R B S B R T R RS B R T S B R

1
S
o0

20 -10 0 10 20 30 40 20 -10 0 10 20 30 40
S-D Distance, X (nm) S-D Distance, X (nm)

Drain-Induced Barrier Lowering (DIBL) is strongly reduced
by using multiple gates
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Drain current /,, (LA/pum)

DGMOS: influence of gate length

Effective channel Length: L= 15 nm, 25 nm and 50 nm

Tg; =10 nm
Drain characteristics Velocity along the channel
(VGS VDD) (VDS VGS - 0 7 V)
25007\\\\ T 1 [T T @2.51077 T T T
- g 7
2000 . S 2107
A :
1500 Z 15107
= B
2 L
1000 . = 1107_
~ i
- B
500 . 5 51000
B s i
B = -
[} AT S S W N SN N > oL . v
0O 01 02 03 04 05 06 0.7 0.8 -20 0 20 40 60
Source-Drain Voltage V¢ (V) Source-Drain distance, X (nm)

peak velocity > 2x107 cm/s
— greater than saturation velocity = 107 cm/s

= non stationary transport
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DGMOS: velocity distribution

L-=15nm

Ves = Vps = Vpp=0.7V

Evolution along the channel

(electrons coming from the source) At the drain-end of the channel
— L L I B L LN EELENLENLI L /_\5106_|"'|"'|"'|"'|_
= 3107E S"“rce(xﬂim) E 2 e[ ¥=15mm mt* ]
T,; x=1nm T,; [ .. E
= : = - Source injected )
o X 2 nm 2 3106¢L ]
9 2 107 - o [ Ce ]
2 - D [ Drain injected ]
: R
5 1107) I pr E
= R I 1
“ OE : . = 0 ; . "—Pj — ~ e '\__L| ]
-4 107 0 4107 -8 107 -4 107 0 4107 8107
Velocity v_along S-D (cm/s) Velocity v_along S-D (cm/s)

2 peaks corresponding to the velocity
of ballistic electrons with either

a transverse mass (m, = 0.19 m,)
or a longitudinal mass (m; = 0.916 m,)
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DGMOS: velocity distribution
L-=15nm
Ves=Vps =Vpp=0.7V
At the drain-end of the channel,

The part of purely ballistic, one-scattered and twice-scattered electrons:

u.)

b 5104  x=15nm "

Ballistic

110 I scatt.

Number of electrons (a

0 10°-

0 2107 4107 6107 8107

Velocity v_along S-D (cm/s)
— ballistic electrons form a large part of the velocity peaks in the distribution
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Fraction of electrons (%)

100

l J
Rl

wut®
PR

<
[E—Y
*

DGMOS: ballisticity

Ves=Vps = Vpp=0.7V

IIIEI.....

pumnngt
T TTT

S g

T ‘ T T T T ‘ T T T T
drain end

Vig=Vp=07V

20 30 40 50 60

Number of scatterings

B, , = fraction of ballistic electrons (in %)

100

o0
-)

AN
-

[\®)
-)

Intrinsic ballisticity B, . (%)

N
-

S

,‘l". /,’——-\\\ |
L Ny \
A \
1 \ N
|
| |
\ /
B , ]
/
0 50777100 150
Channel length L (nm)

The ballisticity is becoming strong in nano-MOSFET

What about the validity of the approximation of semi-classical transport ?

(coherent transport, tunneling, quantum reflection,...?)
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Self-heating in nano MOSFET

« DG MOSFET:

S T Tscp=120m D Electrons Phonons
I e am 5a0° ar? I‘Ts= BTE BTE
: ,am —

* Thermal generation

~

4\
[ 9
ty Q N
folt) /w
K ]__f:‘ ty2

/

In Monte Carlo Simulation, phonon
emissions are localized in (r and k)

e Electro-thermal Simulation

Coupled solutions : MC for electron/Poisson + (direct) BTE
for phonons
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« DG MOSFET:

G

Self-heating in nano MOSFET
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* Thermal generation
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0™
e
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Occp. funct. at T__at X

Obtained from BTE at xm

ourier max

ax

max a
= = = Occp. funct. at T at X \ /
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[-V Self-heating in nano MOSFET

« DG MOSFET:

G

|

S — T =120m D
5d0°) 1015 P 5d0° ar? I‘Ts=
ar? 2m
i »ie >i¢ :
Shm hm 150m

Drain current Id (A/m)

+ 2" 90p
— 4" oop

=== open loop

0.5 1
Vs V)

VDS (V)

B
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Further readings:

CONCLUSION

Electron transport in semiconductor nanodevices

using the Monte Carlo method

- Particle Monte Carlo method is a stochastic solution of the BTE
- Random selection: free flight duration, scattering event, and the effect of scattering
- Only 2 BTE inputs: Dispersion and Scattering rates (empirical or ab-initio)

- Interest:

Easy to implement (few numerical issues)

No assumptions on f (all regime of transport)

Transient response available

Numerous and complex scattering events S(k,k’) could be implemented

=» For charged carriers: The feedback between F and fis an issue!

BTE/MC: Fundamentals of Carrier Transport, Mark Lundstrom, Cambridge Univ. Press

MC: Jacoboni, C., & Lugli, P. The Monte Carlo method for semiconductor device simulation.
Springer Science & Business Media.

Wigner: The Wigner Monte—Carlo Method for Nanoelectronic Devices: A Particle Description of

Quantum Transport and Decoherence, Damien Querlioz&Philippe Dollfus, ISTE Ltd.
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The Wigner Function

Elementary definition of the Wigner function for an electron described

by the wave function y(r,) normalized to 1 in the volume V of interest:

S (1K, 1) = "exp(—ik-r') (r+r'/2|p(¢)[r-r'/2)

1
(27 3

"exp(—ik-r' )y (r+r'/2,t)y*(r-r'/2,t)

1
(2723

1D system :

foo (x, k) = jdx exp(—ikx") w (x+x5’,tjw*(x—£,tj



A piece of formalism...

CLASSICAL TRANSPORT
» Boltzmann (1D): slowly varying potential //

of 1 local effect
+va_- —VVka +Cf
! L . collisions

QUANTUM TRANSPORT

» Wigner’s function defined from density matrix (and thus wave functions)
> Wigner (1D):

< non local effect of potential I/

v Jw i+ Jw —Jdk' (x,k=k") f,, (x, k")
Wigner’s potential: ¥, (x,k) = J‘dx'sin(kx')[V(x+ XE’) B V(x - x’ﬂ

2

> f, — fsiV «classical » b querioz et al. Physical Review B (2008)

» Strong analogy — simular resolution




Quantum Monte Carlo simulation

D. Querlioz et al., IEEE Trans. on Electron Dev. (2007).
Lo MONTE CARLO METHOD

Electron Transport 2Dk

BOLTZMAN / )
=i Transport électronique % / WIGNER A
Electron density .. '
%io,z) o« > fe, (x,2)[ E,(x), £,(X0,2) I

Schrodinger’s Equation

Poisson’s equation




Quantum

Effects and I-V

1000

o (WATm)

X (nm)

L =6 nm, Tg; =3 nm

[ T T 1T ‘ T 17 ‘ T 17 ‘ T T T ‘ T 17 ‘ T T T T \7‘
- —=— Boltzmann %‘éﬂ
_—=— Wigner = T
BN E

T 1\\\\\\‘

L ]
7= [ \\ | ‘ I I ‘ I I ‘ I I ‘ T e

02 03 04 05 0,6
Vs (V)

5000

4000
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0,7

» OFF : Strong quantum effects (tunneling)

» ON : Scattering dominate




