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Context

Transport problem: particle, charge, spin, energy, heat…

• 1. From material (S.C.) properties to device (transistor…) performance
Reciprocal space  Real space (complex geometry) 

Which formalism is relevant? Deterministic or stochastic solution? 

• 2. Time evolution
Frequency response, Noise properties
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Monte-Carlo integration is the most common application of Monte-Carlo methods

Basic idea: Do not use a fixed grid, but random points, because:

1. Dimensionality: a fixed grid in D dimensions with N meshes requires ND points
2. The mesh size must be chosen first, with appropriate criteria

Stochastic solution: numerical integration

Consider a circle of radius 1, enclosed by a 2 × 2 square
The area of the circle is p r2 = p
The area of the square is 4

Generate a large number of uniformly distributed 
random points (x,y) with x,y  [-1,1]

Ninner is the number of points in the circle
Ntotal is the total number of points

Then (Law of larges numbers)
4

inner

total

N

N

p


Example of stochastic solution: calculation of p
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How to generate many random variables satisfying all randomness properties of the problem?

• Distribution of R  [0,1] : Uniformity is not sufficient

• Other issues are the period of the generator and the non-correlation between numbers

• Example of generator of R  [0,1] 

Starting from a seed Nj

Recurrence relation:

Random number generators

 
1

1

1

mod ,

j j

j

j

N A N C

I N P

N I







   


 


With e.g. 5 195 , 7, 2A C P  

I
R

P
 P is the period of the generator
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The transformation method:

1. Given a normalized distribution p(y), the cumulative distribution function (CDF) of p(y) is

2. Drawing a number y according to p(y) (shaded area) amounts to draw uniformly F(y)

by construction: 0 ≤ F(y) ≤1

3. We draw x = R  [0,1] and determine y so that x = F(y)

4. Therefore: y = F-1(x)

Random number from any distribution

   
0

y

F y p w dw 

 Using a uniform distribution for x and the inverse of 

the cumulative (relevant) distribution function F
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Distribution Function

       , , , , ,
k

n r t f r k t k f r k t dk  
    

           , , , , ,x x x

k

v r t v k f r k t v k k f r k t dk  
      

           , , , , ,
k

A r t A k f r k t A k k f r k t dk  
      

Classical approach (quantum properties are neglected) 

 , ,f r k t


e.g.

 All physical quantities A and fluxes related to the electron gas are deduced from this function:

               , , , , ,A

k

J r t v k A k f r k t v k A k k f r k t dk  
           

 Violatation of uncertainty principle ? Eulerian description ? 
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Distribution Function and density operator

       , , , , ,
k

n r t f r k t k f r k t dk  
    

           , , , , ,x x x

k

v r t v k f r k t v k k f r k t dk  
      

               , , , , ,E

k

J r t v k E k f r k t v k E k k f r k t dk  
           

Classical approach : Distribution Function

e.g.

 All physical quantities are deduced from this density matrix:

Quantum approach : density matrix 

         *ˆ, , 'i i i
i

t t p t    r r' r r' r rˆ i i i
i

p  
         *, i i i

i

n p t   r r r r r
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Problem: Time-evolution of the distribution function f (x,k,t)

 , , , ,
coll

dx dk f
f x k t f x dt k dt t dt

dt dt t

                  

coll

f f F f f
v

t x k t

   
   

   

Generalization in 3D space:

coll

f dx f dk f f

t dt x dt k t

   
  

   

Boltzmann Transport Equation (BTE)

r k
coll

f F f
v f f

t t

 
     

 


 


BTE in 6-dimensional
phase space
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Boltzmann Transport Equation (BTE)

( )

dx
v

dt
dk F

p k
dt

 

  





         , ,

coll

f x k tF
f dx dk f x f x dx v t dk f k f k dk t dx t dk dx

t
   


             

       
coll

f x f x dx f k f k dkf F f
v

t dx dk t




            


out-flow

  dx
f x dx

dt


x

k

x x dx

k

k dk

r k
coll

f F f
v f f

t t

 
     

 


 



in and out
scatterings

BTE in 6-dimensional
phase space

During    ,     increases byt ff

 Conservation of the number of particles in the small volume dx dk :

in-flow

  dx
f x

dt

  dk
f k

dt

  dk
f k dk

dt


in-flow

out-flow

out-scatteringin-scattering
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Classical vs. Quantum 
transport Equations

 Conservation in a classical system via Hamilton’s formalism

 Conservation in a quantum system (correspondence principle)

r k
f F

v f f
t


     




 



coll

f

t




 But in transport the main issue is : 
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in-scattering out-scattering collision operator

        ˆ, ,i i
coll i

f
f k S k k dk f k S k k dk C f

t

             
       

'k

'k dk

Collision term - scatterings

x

k

x x dx
k

k dk

           1 , 1 ,i i
coll i

f
f k f k S k k dk f k f k S k k dk

t

                     
         

It turns out to be a non linear tem…

in-scattering out-scattering
',k x

,k x
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BTE solutions: At thermal equilibrium

      1

0

,
, , , 1 exp

f

B

E r k E
f r k t f r k

k T


  

        


        , pE r k E r k 

  

 At thermal equilibrium: Equilibrium distributions are solutions (Boltzmann, FD, BE) 

fE is the Fermi level

Total energy
Potential energy
(bottom of CB)

Kinetic energy
Ex: 

r k
coll

f F f
v f f

t t

 
     

 


 



0
coll

f
t





 At thermal equilibrium: 

        ˆ, ,i i
coll i

f
f k S k k dk f k S k k dk C f

t

             
       

   2
*2

k
k

m
 

 

Eg.: Electrons obey the Fermi-Dirac statistics:



 linear response:
- Steady state
- Small perturbations 

Velocity distribution f(v(k)) Equilibrium:

Linear response (close to equilibrium regime)

 At eq.:

 Shifted gaussian distributions? 

Close to equilibrium:
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(i) Non degenerate N-type semiconductor
(ii) Parabolic and isotropic energy band (constant and isotropic mass)
(iii) Stationary regime (∂f/∂t = 0), without generation
(iv) Relaxation time depending on electron kinetic energy 
(v) Uniform doping and temperature (no gradients in real space)
(vi) Uniform, constant and low electric field (< 1 kV/cm)

Assumptions:

Current density:

Electric force:

(iii) + (v) 

(i) 

(vi) 

Thus, using (iv) so

BTE at low field: Drift term derivation

F qE 
 

        3
1 ,J r q f k r v k n k d k  

      
1 0equif f f f f   with

 
0 1

coll

f f f f

t   
 

 


11
0k

f
f F


   
 



 0

0 1 0

exp f c

B

E E
f k

k T

f f f f

   
  

 
   


0 0

k k
B

f f
f v

k T





    


 
  



  0
1

B

f
f q E v

k T
   

       
2

2 3
0

x
x x

B

q E
J f k v n k d k

k T
  

  
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BTE: solutions

 At thermal equilibrium: Equilibrium distributions are solutions (Boltzmann, FD, BE) 

r k
coll

f F f
v f f

t t

 
     

 


 



 Far from equilibrium the shape of f is unknown !

Complex (linear ?!) PDE with 7 degrees of freedom t,x,y,z,kx,ky,kz

Even with simplification in the real space the direct discretization leads to huge Matrices

 Close to equilibrium: BTE  Drift/Diffusion eq., Hydrodynamic model
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Pop, Eric & Goodson, Kenneth. (2022). Self-heating and scaling of thin body transistors /. 

Dispersion: Electron in Silicon

 
222 2

0

1
2

yx z

l t t

kk k
E E

m m m m


 
     

 



http://www.ioffe.ru/SVA/NSM/Semicond/Si/Figs/121.gif

Analitytical modeling:
Non parabolic and anisotropic modeling
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Collision term – scatterings

For electrons: possible collision mechanisms (collision  interaction  scattering):
- electron-phonon scattering
- electron-impurity scattering
- electron-electron scattering (difficult !!)
- alloy scattering (in SiGe, AlGaAs,…)
- …

   
22

,i i kS k k k H k E E
p     

   


Transition rate:
(for mechanism i)

(Fermi golden rule)

DOS (spin…)
matrix element of Hi

Fermi golden rule, main features:
 1st order, time dependant, perturbation theory,
 Scattering between two Bloch (plane) waves with momentum k and k’ (conservation OK 

but real space ?)

 Time between two scatterings in the limit: t →∞ (to ensure energy conservation),
 Independant scattering mechanisms.

 ,iS k k 
 

coll

f

t




 But matrix element Hi    ????

  .( ) iu r e  k r
k kr
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Pertubation potential and matrix element 

Evaluation of the coupling constant Dq:

We have all needed information to calculate the electron-phonon scattering rates

2

2 22 z

s

e P q
D

q q
p


 

  
 

q

2

s
B

e n
q

k T
 acoustic intravalley (piezoelectric):

 optical intravalley (polar optical):

* Electrostatic force (polar material): physical models exist

(Pz = piezoelectric Const,  qs = inverse screening length)

(hf and lf = high frequency and low frequency permittivity)

22

2

2 1 1
op

hf lf

e
k H k

q

p 
 
 

    
 

  

* Deformation potential Dq: empirical paramters

Constq  with D0 in eV/cm
 optical/acoustic intervalley:

(large q) 0 1 ...D D D q  q

(Energy change associated with a displacement u of an atom)E D u  q
' q k k

q sv q   0 acD D D q q with Dac in eV

sound velocity

 acoustic intravalley:
(small q)



21

     2
2

1 1 1
, ,

2 28
el phS D n E E 

 p
        q q

q

k k k k


 


G

Electron-phonon scattering

+ : emission
- : absorption

General expression for transition probability per unit of time from k to k' (per unit of volume dk')

dependent on
phonon process

       
2

*, exp

cell

d u u i   k' kk k r r r G rG

Dq is the coupling constantwhere is the mass density

is the overlap factor

1

exp 1
B

n

k T




 
 

 

q
q

 the energy of each mode q is quantized according to:

 the quantum of energy is a boson particle called phonon, whose number is given by:

1

2
E n     q q

   
22

,i i kS k k k H k E E
p     

   


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Electron-phonon scattering

* Electrons:

 intravalley process in G valley (GaAs):

 intravalley process in X valleys (Si):

 intervalley process: 

 

     
  

21/ 2 1/ 2 1/ 2

,

1 1 cos

1 2 1 2

E E EE

E E

   

 

 

     
 

k kG

 , constant 1k k  G

* Holes:

 intravalley process:

 intervalley process (hhlh):

   21
, 1 3cos

4
  k kG

  23
, sin

4
 k kG

Evaluation of the overlap factor      
2

*,

cell

d u u   k' kk k r r rG
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Electron-phonon scattering in Si

* 2 physical mechanisms of interaction:
- Deformation potential (all SC)
- Electrostatic force (polar SC, e.g. GaAs)

* 2 types of phonon mode (branche):

- Acoustic modes
- Optical modes

* 2 types of transition:

- intra-valley (small q)
- inter-valley (large q)

Classification of phonon processes:

2

2

q

4

4

4

4

typical 
phonon
spectrum
(along 
1 direction)

x2

x2

g f
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Monte Carlo method: example of scattering rates (1)

Electron-phonon interaction by deformation potential coupling

* Acoustic intravalley scattering

 the exchange of energy is neglected (elastic approximation, E' = E)
and both emission and absorption are considered through the same process

 small energy and small wave vector phonon 

1

exp 1 B

B

k T
n

k T





  

    
  

q
q

q





   ,ac ack S k k dk   
   

     , , ,ac acE S k k J E d E d d     
 

     3/ 2 2
4 2

2
1 2 1B

ac DOS ac
s

k T
E m D E E E

v
  

p 
  



   
2

2 2
,

4
acB

ac
s

Dk T
S E E

v


p 
  k k


 

222 2

0

1
2

yx z

l t t

kk k
E E

m m m m


 
     

 


with 

 , ,dk J E dE d d   


     
3/23/2 2 2

0
2

sin cos
, , 2 1 2 1 sin

t l

m
J E E E E

m m

     


       
   

, ,k E  

change of variables:
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Monte Carlo method: example of scattering rates (2)

Electron-phonon interaction by deformation potential coupling

* Intervalley scattering 

        
0

3/ 2 2
03

1 1 1
1 2 1

2 22
iv

iv DOS
iv

Z
E m D n E E E     

p  
         q      



zero order process: 0D Dq

   
0

2
0

2

1 1
,

2 28
iv iv

iv

D
S Z n E E 

 p
       qk k


 


+ : emission
- : absorption

(Ziv possible final valleys)

example: Si (T = 300K)

Dac = 9 eV
D0 = 3.4×108 eV/cm

intervalley (-) phonons:

g1
g2
g3
f1
f2
f3

11.4 meViv 
18.8 meViv 
63.2 meViv 
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46.3 meViv 
59.1 meViv 
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Electron-impurity scattering

   exp

4
D

el imp coul
r Le

H U r
rp 


 

* For 1 ionized impurity:

 
 

 
4

2 2 22 2

1 1 1
,

4
el imp

s

e
S E E

V q q


p    


k k


* For Nimp impurities: imp dopN N V

 
 

 
4

2 2 22 2

1
,

4

dop
el imp

s

N e
S E E

q q


p    


k k


,q k k 
 

'k k
 

 22 22 1 cosq k k k    
 

imp
+e -e

-e

-e

-e

-e-e

-e

-e

2

1 B
D

s

k T
L

q e n


 

= Debye length
= screening length

DL

n = electron density

r

k 
k





accounts for screening effects due to other electrons exp / Dr L

E E 
elastic process

(Brooks-Herring model)
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1. Stochastic solution

2. Boltzmann Transport Equation 

3. BTE Inputs: Dispersion and Scattering

4. BTE Solution: Particle Monte Carlo method
- Frozen field
- Device simulation

5. BTE Applications and Examples

Electron transport in semiconductor nanodevices 
using the Monte Carlo method 

Summer School MONANOT,  Frejus, May, 2022 – Jérôme Saint Martin, Philippe Dollfus
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Solving the BTE for device simulation (in  frozen field E) 

Indeed, the BTE is a rather complicated integro-differential equation  direct (deterministic) 
solution is complex

       3 3, ,r k i i

i

f F
v f f f k S k k d k f k S k k d k

t

                 


        



Starting from an 
• initial solution 
• boundary conditions

How to calculate the time evolution of  the distribution function f inside the device with a 
constant electric field (frozen field? 

- simplifying approximations of f: drift-diffusion (DD) and hydro-dynamic (HD) approaches

- statistical solution: Monte Carlo methods (MC)
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The particle Monte Carlo method

random selection ofscattering rates  i k


F


1f
t

2f
t

 0 0k t
  

11 0 fk t t


 
1 22 0 f fk t t t 



- time of free flights tf
- type of scattering i
- effect of scattering (E, )(Monte Carlo algorithm)

carrier trajectory:
succession of free flights
interrupted by
instantaneous scatterings

•                  assembly of individual particles , ,f r k t


 Statistical solution


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Equivalence between BTE and particle MC trajectories

r k
scatt

f F f
v f f

t t

 
     

 


 


   

   

n n

scatt

n
n

dk t k tF

dt t

dr t
v t

dt

 
  






 




       , , n n

n

f r k t r r t k k t       

       , ,n n nf r k t r r t k k t    
    

n n

n n n
r n k n

f d r d k
f f

t dt dt

  
    



 

Is BTE equivalent to MC ?


?

with [1]

nr rf f  
 

nk kf f  
 

But [1]  and

n

n n
r n n k n k n

scatt

f kF
f v f f

t t


  

 
      

 


  



n

scatt

f

t




* Summing over n  BTE is recovered

* Hence, with MC trajectories:

* Contribution of electron n:
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The particle Monte Carlo method

 Statistical solution: particle Monte Carlo method

•                  assembly of individual particles

• 1 particle 
• N particles allow us to reconstruct

 no complicated equation to solve

 same physical  (or even better) content as the deterministic solution

 complex scattering mechanism are easily implemented

 suitable for device simulation (even in 3D)

 no assumption about f

 OK for NL problem

 , ,f r k t


   ,r t k t


       , , i i

i

f r k t r r t k k t   

random selection ofscattering rates  i k


F


1f
t

2f
t

 0 0k t
  

11 0 fk t t


 
1 22 0 f fk t t t 



- time of free flights tf
- type of scattering i
- effect of scattering (E, )

(Monte Carlo algorithm)

carrier trajectory:
succession of free flights
interrupted by
instantaneous scatterings
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1 particule is characterized at time t by

Problem : determination of and under the action of forces and scattering events

 ,r k


 k t


 r t


 E k


band structure

scattering rates  i k


the knowledge of:Requires

   1dk t d p t F

dt dt
 

 

 

    1dr t E
v t

dt k


 









E E

k k




 

scatterings

the calculation of:

The particle Monte Carlo method

   ,i ik S k k dk   
   

 i k


= scattering rate of interaction process i
= probability per unit of time that an electron in state     scatters to any state 

by an interaction process of type i
k


k


Given by 
- semi-empirical models
- ab-initio (DFT)



33

Diffusion: Illustration of trajectories 

Intervalle du temps 1.e-13 s

Intervalle du temps 1.e-12 s

Intervalle du temps 1.e-11 s
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Monte Carlo method: selection of free-flight duration

1. Suppose     0Consttot i

i

E E    
Consider nCF = population of electrons that have not experienced any collision since t = 0

(CF = Collision-Free)

Each electron having the same scattering rate 0, the time rate of change of nCF is:

     0 00 expCF
CF CF CF

d n
n n t n t

dt
     

 The probability that an electron has a free flight (no collision) during the time t is therefore:

 
 

 0exp
0

CF

CF

n t
t

n
 

 The probability that an electron suffers a collision during the time interval dt is:

0 dt

 The probability that an electron suffers its first collision between t and t + dt is:

   0 0expP t dt t dt   
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Monte Carlo method: selection of free-flight duration

   
0

ft

f fR R t P t dt  The probability that the free-fight time is less than tf is:

   
0

1R P t dt


  of course we have:

 R t

ttf

Rf

0

1To select tf according to  P t


To select a random number Rf uniformly distributed

between 0 and 1, i.e. according to   1rP R 

   rP R d R P t dt

   0
0 0

1 exp
f fR t

f fd R P t dt R t     
where 1f fR R  

 
0

ln f
f

R
t




 
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Monte Carlo method: selection of free-flight duration

2. BUT    tot i

i

E E  is not constant

E

0

tot

sc



fictitious interaction: self-scattering  sc E

    0Consttot scE E    

solution: we introduce a new interaction

(if selected this interaction has no effect on the electron state)
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Monte Carlo method: selection of scattering event

* Type of scattering: after each free flight, the electron undergoes a scattering event

of which type ?

F


1f
t

2f
t

 0 0k t


 
11 0 fk t t


 

10 0 fk t t



selection using a random number Rs uniformly
distributed between 0 and 1: 

    0

1

j

j i

i

g E E 




 in this case the scattering process i is selected

0 11g

sR

2g 1ig  ig
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* Effect of selected scattering: deviation of the wave vector and possible energy exchange

Monte Carlo method: selection of scattering event

     

       
2

0 0

, , , , sin

, , , , , sin sin ,

i i i

i

k S k k dk S k k dk d d

S E E J E d E d d A E d d B

p p

     

           

    

  

 

  

   

in case the case of phonon process: qE E    
in the case of other processes: E E 

   
0 0

, sin ,
s s

s sI d d B

 

         selection of s and s with random numbers R and R :

   
 

   
 

,2

,2

,

,2s

s
s

s s
s

s

I
P R

I

I
P R

I



 

 p


p p

 


 p


 



  

 s

 s

case of isotropic scattering:

   
 

1 cos 2

2

s s

s s

P

P

 

  p

 




cos 1 2

2
s

s

R

R





 p

 
 



F


1f
t

2f
t

 0 0k t


 
11 0 fk t t


 

10 0 fk t t



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Transport Monte Carlo simulation

Extraction of intrinsic transport parameters  
(mobility, relaxation times, saturation velocity,…) 

Velocity-Field characteristics in uniform material – Stationary transport

0
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vsat  107 cm/s

µ (GaAs)  7000 cm2/Vs
µ (Si)  1500 cm2/Vs

(equilibrium between perturbation and relaxation effects)
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CNT: Transient behaviour

n = 34, E = 60 kV/cm

 Transient effect during 0.1 ps before reaching the stationary state

 High Velocity Overshoot : vpeak = 7.8×107 cm/s for n = 34

vstat = 3.8×107 cm/s

 Response to a step field

 Time evolution of average electron velocity

Time tt = 0

E
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Solving the BTE for device simulation

       3 3, ,r k i i

i

f F
v f f f k S k k d k f k S k k d k

t

                 


        



Boltzmann
Equation

Poisson
Equation

- statistical solution: Monte Carlo methods (MC)

- Direct solution of the Poisson equation
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Monte Carlo method: flow chart

For the simulation during 
a time tsim of a device 
containing Npart particules

(Npart is not constant)

initial conditions, ti = 0

tf = ti + t

possible injection of new particles

solution of the Poisson Equation

Monte Carlo simulation of particle
trajectories (Npart) between ti and tf

tf = tsim ? or
convergence

reached ?

calculation of quantities of interest

END

no

yes

ti = ti + t
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MC: sampling

       3 3, ,r k i i

i

f F
v f f f k S k k d k f k S k k d k

t

                 


        



Boltzmann
Equation

Poisson
Equation

- Spatial discretization :

2

1 B
D

s

k T
L

q e n


 

= Debye length
= screening length

max x

n = electron density

= dielectric relaxation time 
(or plasma oscillation) 

max t


 


 
D

SC SC

D nqN
 


0

0

0

- Time discretization :
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Consider an N-type homogeneous region

Space- and time-discretization issue:
Debye length and Dielectric relaxation time

Equilibrium density: 

Conductivity: 

0 Dn N

0 0 nq n 

Electric field: 0E 
Under equilibrium: 

Small local desequilibrium:    0, ,n x t n n x t  

 An electric field builds up to restore the equilibrium according to the continuity equation: 

   , ,1n x t J x t

t q x

 


 

where the current density is:      
0

,
, , n

n x t
J x t E x t q D

x



 



and the electric field obeys Poisson’s Eq.: 
    0

0

,
,

s

E x t q
n n x t

x  


 

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Space- and time-discretization issue:
Debye length and Dielectric relaxation time

By neglecting the second order terms, these 3 equations lead to: 

     2
0

2
0

, ,
, t n

s

n x t n x t
n x D

t x


 

 
 

 

* Time desequilibrium 
     0

0
0

,
, t , exp

s D

n x t t
n x n x t n

t


  

        

* Space desequilibrium       
2

0
02 2

0

,
, , exps B

D

n x tk T x
n x t n x t n

q x L

 


        

0 0

0 0

s s
D

nq n

   
 

 

0
2

0

s B
D

k T
L

q n

 


Dielectric Relaxation Time

Debye Length
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Debye length and Dielectric relaxation time

0 0

0 0

s s
D

nq n

   
 
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2

0

s B
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 

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Device = open system for which appropriate boundary conditions must be applied

boundary conditions

1. Boundary conditions for the solution of Poisson's equation:

* on nodes adjacent to a metallic contact, the electrostatic potential 
is fixed: 

( )node biasV i V

* on other device boundaries, the normal component of the electric 
field vanishes: 

biasV

0
dV

E
d x  

2. Conditions for carrier injection into the device:

biasV * in the cells adjacent to the ohmic contacts, the thermal equilibrium 
conditions are assumed to be recovered: 

orD An N p N 

before each new time step iteration, this condition is checked and 
if necessary the appropriate number of electrons is injected. The 
wave vector of injected carriers is randomly selected using Fermi or
(if non degenerate) Maxwell distribution.
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Device Monte Carlo simulation: particle trajectories

N-channel MOSFET

source draingate

red dots: electrons
green dots: holes

Possibility to make movies of particle motion in the working device 
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1. Stochastic solution

2. Boltzmann Transport Equation 

3. BTE Inputs: Dispersion and Scattering

4. BTE Solution: Particle Monte Carlo method

5. BTE Applications and Examples

Electron transport in semiconductor nanodevices 
using the Monte Carlo method 

Summer School MONANOT,  Frejus, May, 2022 – Jérôme Saint Martin, Philippe Dollfus
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Conventional MOSFET architecture

P-type Si (NA)

ND ND

Source Drain

Gate Oxide (TOX)

Conventional Bulk MOSFET

XJ
LC

Short channel effects:
electron injection into
the channel is not only
controled by VGS

but also by VDS

Source-drain direction, X

Potential (at given VGS)

LC

increasing VDS

VDD

VDSVGS = 0.5 V

VGS = 1 V

ID

0VDDVT

VGS

ln ID

Ioff

0

Ion
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Conventional MOSFET architecture

To control short-channel effects when reducing the gate and channel lengths
in deca-nanometer transistors one needs:

- reduced TOX, but then gate tunnelling leakage current occurs

- reduced XJ, but then access series resistance increases dramatically

- higher NA, but then: - transport properties are degraded

- sensitivity to doping fluctuations

Needs for new materials and new device architectures

P-type Si (NA)

ND ND

Source Drain

Gate Oxide (TOX)

Conventional Bulk MOSFET

XJ
LC

VDD

VDSVGS = 0.5 V

VGS = 1 V

ID

0VDDVT

VGS

ln ID

Ioff

0

Ion



52

New MOSFET architectures on SOI substrate

Quadruple-Gate (QG)Double-Gate (DG)

Triple-Gate (TG) WSi
Single-Gate (SG)

TSi

TOX

SiO2

Ultra-thin undoped channel & Multiple-Gate transistors

 improved transport properties & lower fluctuations
 improved control of short channel effects 
 less urgent reduction of TOX

undoped channel ………………
thin channel (TSi < 10 nm) …..
multiple-gate ………………….
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Nano-scaled DG-MOSFET

Tox = 1.2 nm

TSi = 5-10 nm
ND =

5  1019 cm-3

NA =

2×1015 cm-3

ND =

5  1019 cm-3

SiO2

G

S D

LC = 15 nm

LG = 25 nm

Tox = 1.2 nm SiO2

G

FMG = 4.46 eV
VDD = 0.7 V

LS = 25 nm LD = 25 nm

(VDD is the supply voltage)

For comparison: similar design of SG, TG and QG transistors
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Multiple-Gate MOSFETs: ID-VGS characteristics
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* lower Ioff
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Multiple-Gate MOSFETs: Short-channel effects
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Drain-Induced Barrier Lowering (DIBL) is strongly reduced
by using multiple gates
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DGMOS: influence of gate length
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DGMOS: velocity distribution
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DGMOS: velocity distribution

LC = 15 nm

VGS = VDS = VDD = 0.7 V

At the drain-end of the channel,
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The part of purely ballistic, one-scattered and twice-scattered electrons:

 ballistic electrons form a large part of the velocity peaks in the distribution
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DGMOS: ballisticity

VGS = VDS = VDD = 0.7 V

Bint = fraction of ballistic electrons (in %)

The ballisticity is becoming strong in nano-MOSFET

What about the validity of the approximation of semi-classical transport ?

(coherent transport, tunneling, quantum reflection,…?)
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Self-heating in nano MOSFET

• DG MOSFET:

60/48
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TSiO2 = 1.2nmS DG

In Monte Carlo Simulation, phonon 
emissions are localized in (r and k) 

F


1vt

2vt

 00 tk


 1v01 ttk 


• Thermal generation

Coupled solutions :  MC for electron/Poisson +  (direct) BTE 
for phonons

• Electro-thermal Simulation

Electrons 
BTE

Phonons
BTE
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Self-heating in nano MOSFET

• DG MOSFET:

61/48
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• Thermal generation

At the nanoscale, out of equilibrium (Rspace and E) effects occur

• Phonon spectrum
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I-V Self-heating in nano MOSFET

• DG MOSFET:

62/48
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CONCLUSION 
Electron transport in semiconductor nanodevices 

using the Monte Carlo method 

Further readings:
• BTE/MC: Fundamentals of Carrier Transport, Mark Lundstrom, Cambridge Univ. Press 
• MC: Jacoboni, C., & Lugli, P. The Monte Carlo method for semiconductor device simulation. 

Springer Science & Business Media.
• Wigner: The Wigner Monte–Carlo Method for Nanoelectronic Devices: A Particle Description of 

Quantum Transport and Decoherence, Damien Querlioz&Philippe Dollfus,  ISTE Ltd.
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The Wigner Function

Elementary definition of the Wigner function for an electron described

 
 

   

 
     

3

3

1
, , exp 2 2

2

1
exp 2, * 2,

2

wf t d i t

d i t t


p

 
p

       

       





r k r k r r r r r

r k r r r r r

by the wave function               normalized to 1 in the volume V of interest: ,t r

   1
, , exp , * ,

2 2 2w
x x

f x k t d x i kx x t x t 
p

           
   

1D system :



ˆ ˆw
x w V w w

f
v f Q f C f

t


   



non local effect of potential V

 Wigner (1D):

   1ˆ , ,
2V w w wQ f dk V x k k f x k
p

   
   , sin

2 2
w

x x
V x k d x kx V x V x

                 Wigner’s potential:

A piece of formalism…
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 Strong analogy  simular resolution

 Wigner’s function defined from density matrix (and thus wave functions)

1 ˆ
x k

f
v f V f C f

t


    

 
 

local effect

 Boltzmann (1D): slowly varying potential V

collisions

CLASSICAL TRANSPORT 

D. Querlioz et al. Physical Review B (2008) fw  f si V « classical »

QUANTUM TRANSPORT



Full quantum code (confinement + transport)  with scattering

Quantum Monte Carlo simulation
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V(x,z)

 
xoN

2

0n0 )z,x()z,x(n

Si02

x

y

z

Confinement
quantique

Transport électronique

Si02

Electron Transport 2Dk
BOLTZMAN / 

WIGNER 

Electron density

Poisson’s equation

V(x,z)

MONTE CARLO METHOD

 
xoN

2

0n0 )z,x()z,x(n En(x), ξn(x0,z)

Schrödinger’s Equation

x0

Scattering: e-
2Dk ↔ phonons 3Dk, impurities, rough interfaces

D. Querlioz et al., IEEE Trans. on Electron Dev. (2007).



Quantum Effects and I-V
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 ON : Scattering dominate

 OFF : Strong quantum effects (tunneling)
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