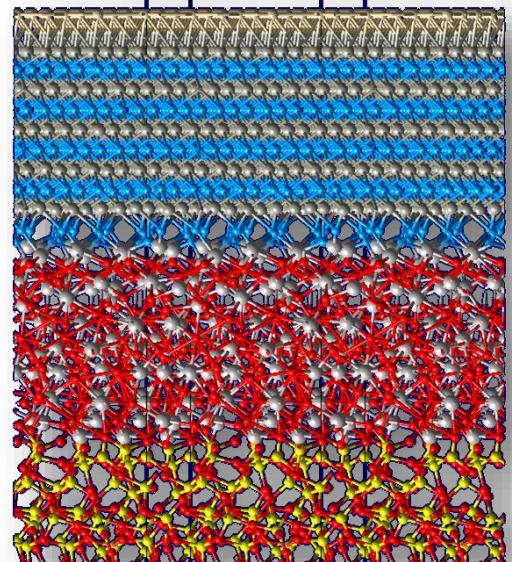
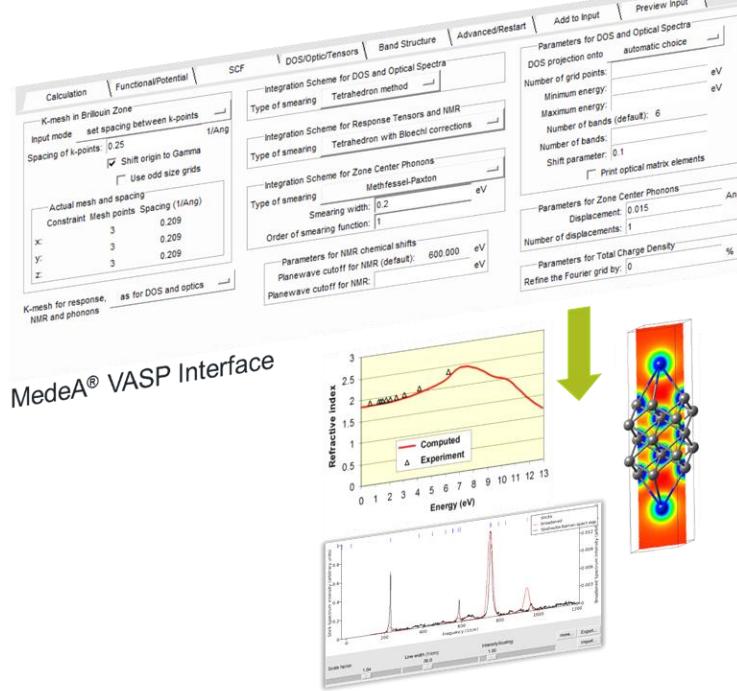

Monacoste 2022

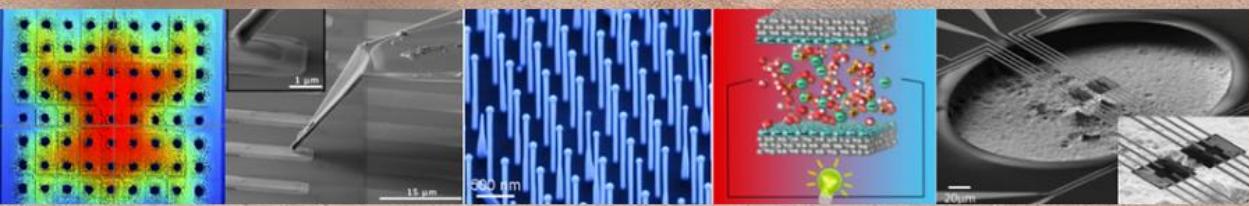
Computational Materials Science in MedeA® environment



B. Minisini, J. Coll

11th May 2022

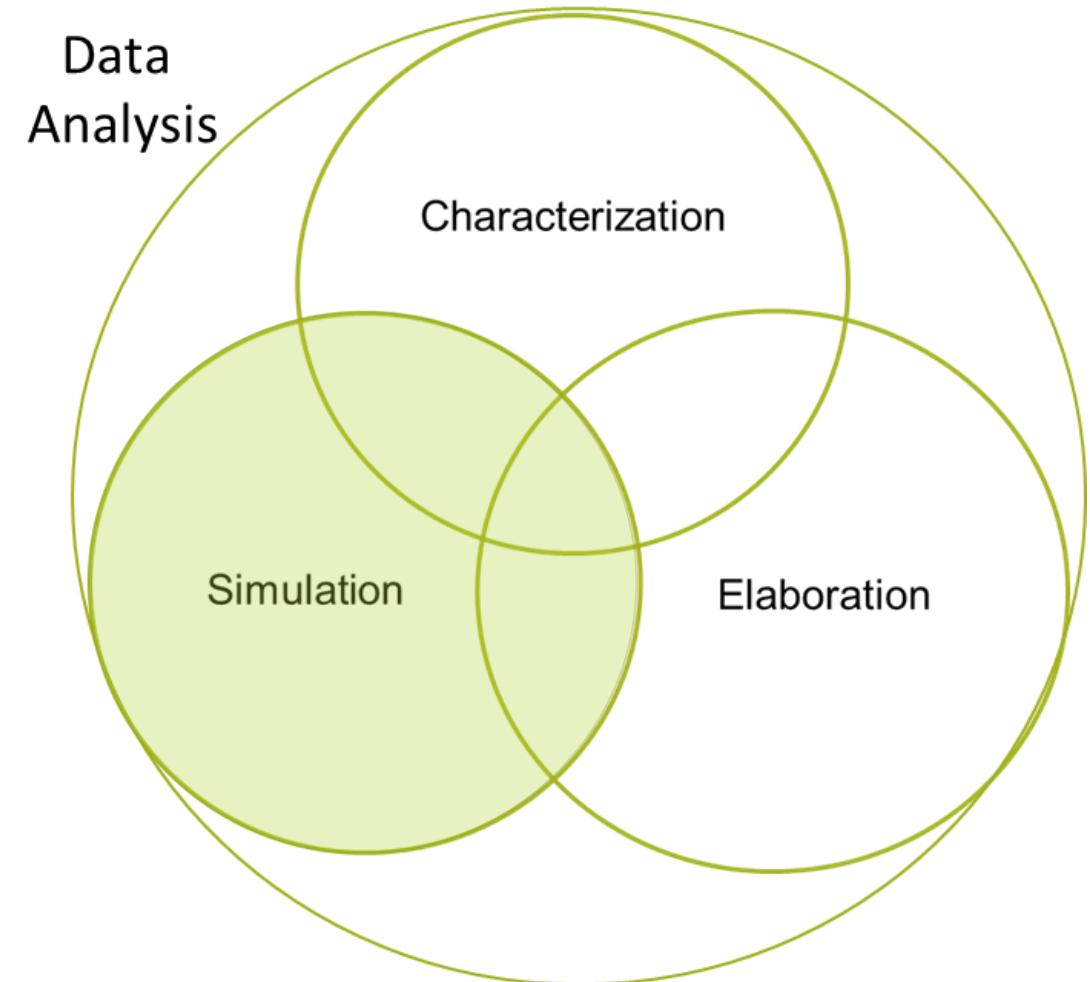
bminisini@materialsdesign.com

All the density functional theory calculations were performed using the Vienna Ab-initio Simulation Package (VASP) code.⁴³⁻⁴⁵ Generalized gradient approximation in the parametrization of Perdew-Burke-Ernzerhof (PBE)⁴⁴ and the vdW correction proposed by Grimme are chosen.⁴⁶ The energy cutoff was set to be 550 eV. Geometry structures are fully relaxed until the convergence criteria of energy and force are less than 10^{-5} eV and 0.01 eV \AA^{-1} , respectively. A Monkhorst-Pack mesh of $7 \times 7 \times 1$ K-points is used in the 2D Brillouin zone for geometry optimizations and electronic structure calculations. We also used a large vacuum space to

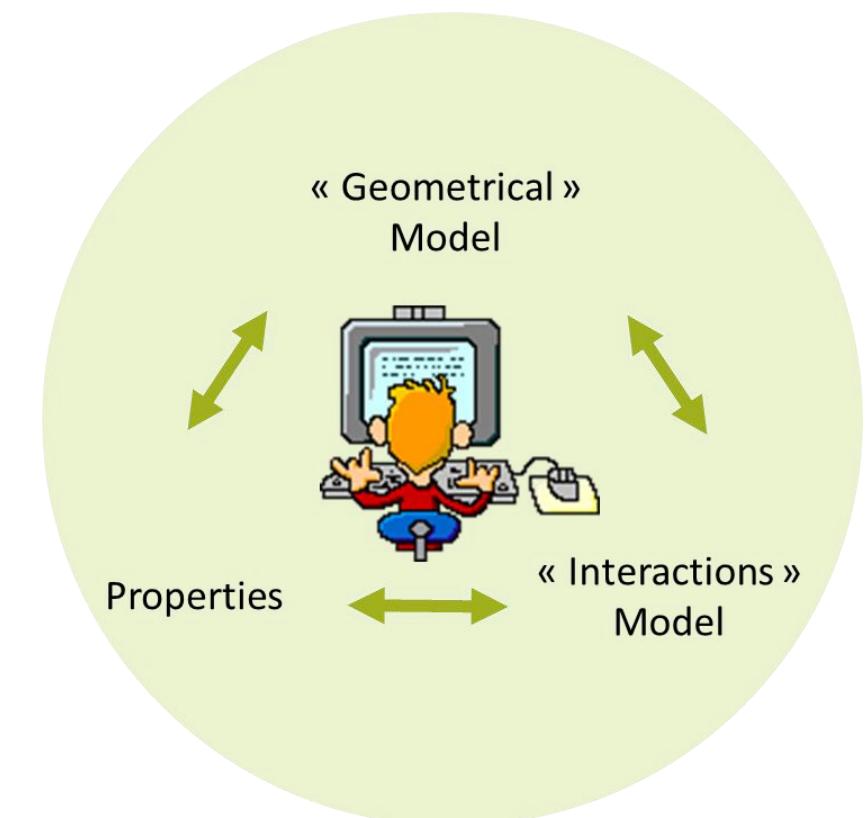


Introduction

Modeling Nanomaterials for Energy Transport and Storage



08th-13th May 2022,
Villa Clythia, Fréjus,
French Riviera,
France


DATA :

1 number + 1 units + (1 uncertainty) obtained on 1 sample with 1 method under certain conditions

Introduction

COLOR CODE:		Physical Principles	Method	Workshop	Applications	
	Sunday 8th	Monday 9th	Tuesday 10th	Wednesday 11th	Thursday 12th	Friday 13th
8h00						
8h30						
9h00						
9h30						
10h00						
10h30						
10h45						
11h00						
11h15						
11h30						
12h00						
12h30						
13h00						
13h30						
14h00						
14h30						
15h00						
15h20						
16h00						
16h30						
17h00						
17h20						
18h00						
18h30	Welcome and Aperitive	pause	pause			
19h00		Dinner	Dinner			
19h30				Free Dinner		
20h00						
21h00		Poster session	Poster session			
22h00						

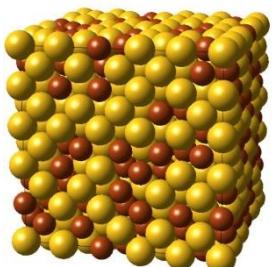
Introduction

International Conference on Multiscale Approches for Process Innovation 2012

« One will have to train students and people to be expert at all scales ? »

C. CHIZALLET (IFPEN), Oil & Gas Sci. Tech. 68, 110-1113, 2013

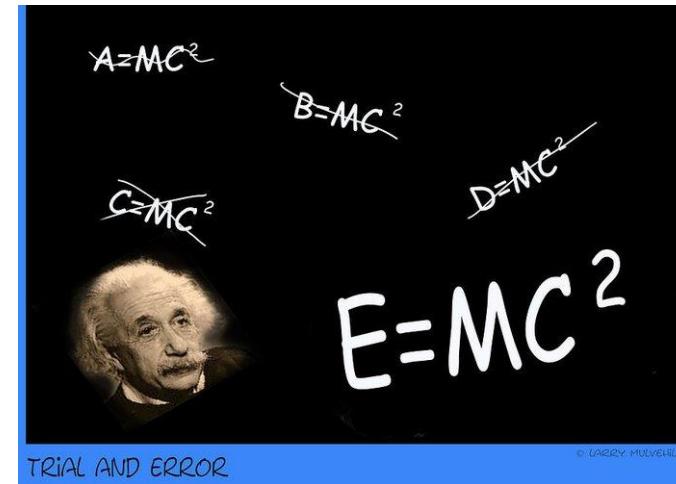
« If I need brain surgery I will not apply to a foot doctor »


R.J QUANN (Exxon Mobil), Oil & Gas Sci. Tech. 68, 110-1113, 2013

« ...promote a rather wide training and then on this broad training you need to build specialization »

P. SAUTET (ENS Lyon), Oil & Gas Sci. Tech. 68, 110-1113, 2013

« ...it is more important to teach the skills to use computational tools rather than the programming skills required to develop such tools. »

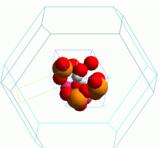

THORTON et al JOM, 61, 12-17, 2009

Introduction

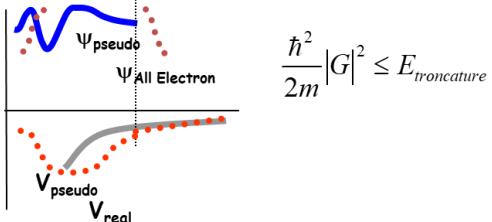
- How reduce the learning curve ?
 - Lectures
 - Bibliography
 - Properties
 - Methods
 - Materials
 - Practice

reasoned

Introduction


$$\hat{H}\psi = E\psi \quad \xrightarrow{\text{DFT}} \quad \hat{h}_{\text{eff}}\varphi_i = \varepsilon_i\varphi_i$$

$$E[\rho(r)] = T + \int V_{\text{eff}}(r)\rho(r)dr$$


Plane wave basis

$$\varphi_i(\mathbf{r}) = \sum C_i(\mathbf{G}) e^{i\mathbf{G} \cdot \mathbf{r}}$$

K-points :

Pseudopotentiel :

All the density functional theory calculations were performed using the Vienna Ab-initio Simulation Package (VASP) code.^{43–45} Generalized gradient approximation in the parametrization of Perdew–Burke–Ernzerhof (PBE)⁴⁴ and the vdW correction proposed by Grimme are chosen.⁴⁶ The energy cutoff was set to be 550 eV. Geometry structures are fully relaxed until the convergence criteria of energy and force are less than 10^{-5} eV and 0.01 eV \AA^{-1} , respectively. A Monkhorst–Pack mesh of $7 \times 7 \times 1$ *K*-points is used in the 2D Brillouin zone for geometry optimizations and electronic structure calculations. We also used a large vacuum space to

- [NGX, NGY, NGZ and NGXF, NGYF, NGZF-tags](#)
- [KSPACING-tag and KGAMMA-tag](#)
- [NBANDS-tag](#)
- [NBLK-tag](#)
- [SYSTEM-tag](#)
- [NWRITE-tag](#)
- [ENCUT-tag](#)
- [EN AUG-tag](#)
- [PREC-tag](#)
- [ISPIN-tag](#)
- [MAGMOM-tag](#)
- [ISTART-tag](#)
- [ICHARG-tag](#)
- [INIWAV-tag](#)
- [NELM, NELMIN and NELMDL-tag](#)
- [EDIFF-tag](#)
- [EDIFFG-tag](#)
- [NSW-tag](#)

- [NBLOCK and KBLOCK-tag](#)
- [IBRION-tag, NFREE-tag](#)
 - [IBRION=-1](#)
 - [IBRION=0](#)
 - [IBRION=1](#)
 - [IBRION=2](#)
 - [IBRION=3](#)
 - [IBRION=5 and IBRION=6](#)
 - [IBRION=7 and IBRION=8](#)
 - [IBRION=44](#)
 - [IBRION some general comments \(ISIF, POTIM\)](#)
- [POTIM-tag](#)
- [ISIF-tag](#)
- [PSTRESS-tag](#)
- [IWAVPR-tag](#)
- [ISYM-tag and SYMPREC-tag](#)
- [LCORR-tag](#)

INCAR
KPOINTS


```
# Time-averaged data for fix 2
# TimeStep v time c_thermo temp c_thermo_press v_sysvo
50000 25000.5 310.663 479.916 21226.2 1.301 1592.51 -1
100000 75000.5 312.475 662.159 21226.2 1.301 1626.3 -1
150000 125001 316.215 620.213 21226.2 1.301 1702.37 -6
200000 175001 318.552 186.784 21226.2 1.301 1729.92 -4
250000 225001 319.014 86.3631 21226.2 1.301 1739.07 -4
300000 275001 319.426 243.312 21226.2 1.301 1749.2 -35
350000 325001 319.482 217.45 21226.2 1.301 1779.71 -4.
```

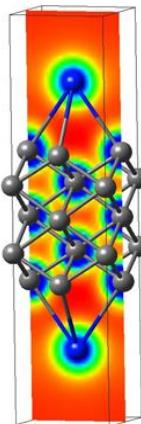
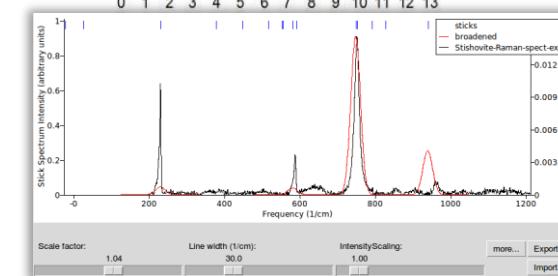
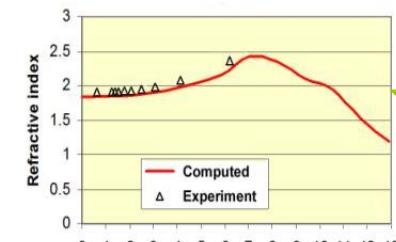
Sub distance()

' copy data from sheet1 to sheet2 to evaluate the end_en

' position of the two atoms coordinates in the file

n = 16

m = 17




'loop to copy the atoms coordinates from sheet1 to sheet

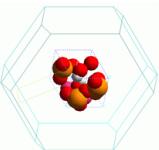
Worksheets("sheet1").Activate

Range("A2:H5002").Select

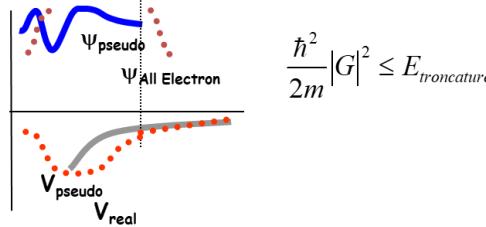
Selection.ClearContents

```
For i = 1 To 12000
    Worksheets("sheet2").Cells(i + 1, 1).Value =
    Worksheets("sheet2").Cells(i + 1, 9).Value =
    n = n + 11
    m = m + 11
    Next
```


Introduction

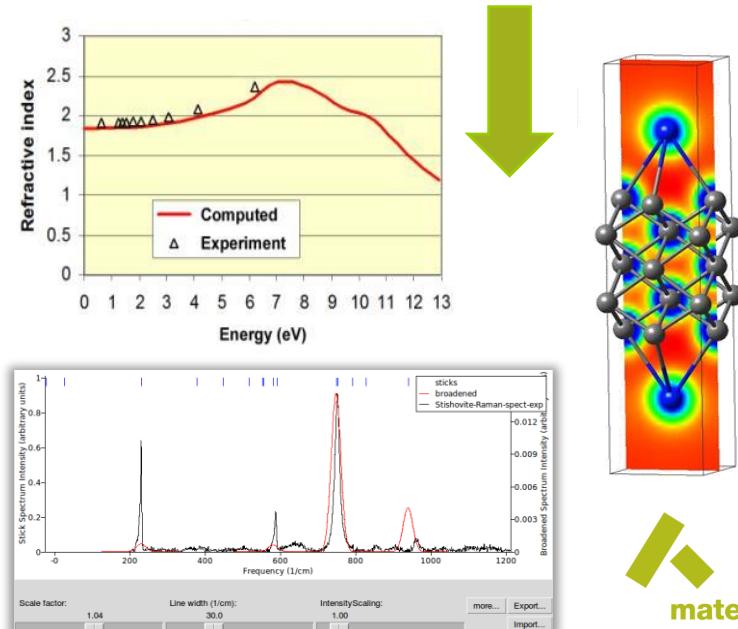

$$\hat{H}\psi = E\psi \xrightarrow{\text{DFT}} \hat{h}_{\text{eff}}\varphi_i = \varepsilon_i\varphi_i$$

$$E[\rho(r)] = T + \int V_{\text{eff}}(r)\rho(r)dr$$


Plane wave basis

$$\varphi_i(r) = \sum C_i(\mathbf{G}) e^{i\mathbf{G} \cdot \mathbf{r}}$$

K-points :

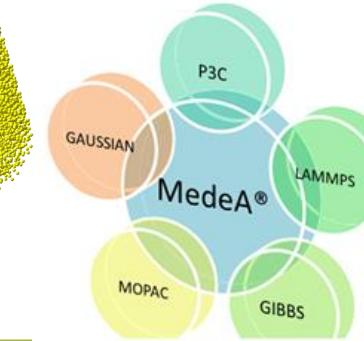
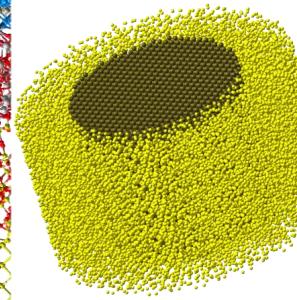
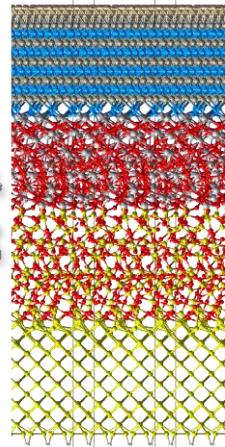
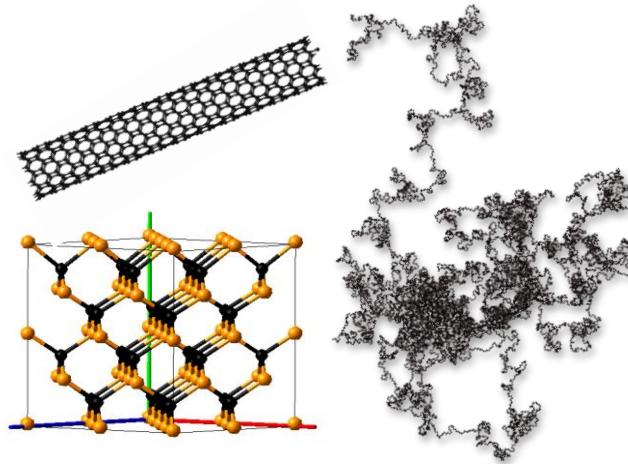


Pseudopotential :

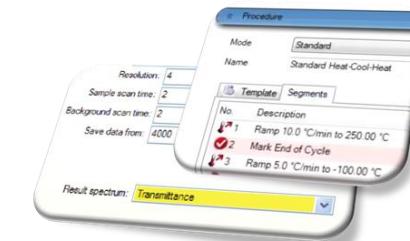
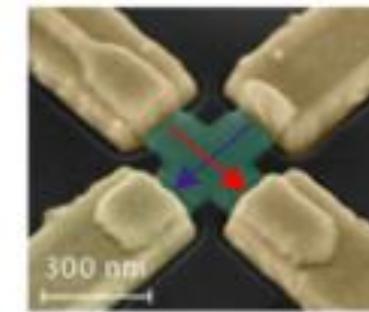
MedeA® VASP Interface

All the density functional theory calculations were performed using the Vienna Ab-initio Simulation Package (VASP) code.^{43–45} Generalized gradient approximation in the parametrization of Perdew–Burke–Ernzerhof (PBE)⁴⁴ and the vdW correction proposed by Grimme are chosen.⁴⁶ The energy cutoff was set to be 550 eV. Geometry structures are fully relaxed until the convergence criteria of energy and force are less than 10^{-5} eV and 0.01 eV \AA^{-1} , respectively. A Monkhorst–Pack mesh of $7 \times 7 \times 1$ *K*-points is used in the 2D Brillouin zone for geometry optimizations and electronic structure calculations. We also used a large vacuum space to

Introduction





“I like MedeA, it gives me more time to think.”

-Ryoji Asahi



Toyota Central Research and Development Laboratories, Nagoya, Japan

Introduction

Atomic-scale Simulations

Laboratory Work

Databases

Direct access to experimental and calculated structure data gathered over decades – more than 1,1 million structures

Builders

Rich set of builders for crystalline/amorphous/ordered systems, molecules, surfaces, interfaces, nanoparticles, polymers, fluids, solids, hybrid materials, composites...

Compute Engines

VASP, GAUSSIAN, MOPAC, LAMMPS, GIBBS

Forcefields + Forcefield Optimizer

Access to state-of-the-art Forcefields (non-reactive & reactive); open access to all FF parameters; addition of user-defined FFs; FF optimization

MedeA environment

Property Modules

Graphical workflows & pre-configured computational protocols, to facilitate modeling, analysis, and property prediction

High Throughput

Generation of large and consistent sets of computed data & descriptors

Analysis Tools

Analysis and post-processing tools, for system characterization, visualization and analysis of calculated properties

JobServer & TaskServer

Automated processing of compute protocols & workflows; Reliable long-term archiving & accounting of computed data

Databases

over 1.1 million entries

<https://www.materialsdesign.com/databases>

MedeA InfoMaticA: Search

File Edit Options MPM

ID	completeness	space group name H-M	sum	structural	name systematic
----	--------------	----------------------	-----	------------	-----------------

Search Criteria Detailed Information Coordinates Geometry Coor

Require that	formula	-Delete--
Require that	--Add new criterion	

- atom site
- atom site anisotrop
- atom type
- audit
- cell
- chemical
- chemical formula
- citation
- citation author
- database
- database 2
- exptl crystal
- protocol
- refine
- structure
- symmetry

Run search Clear

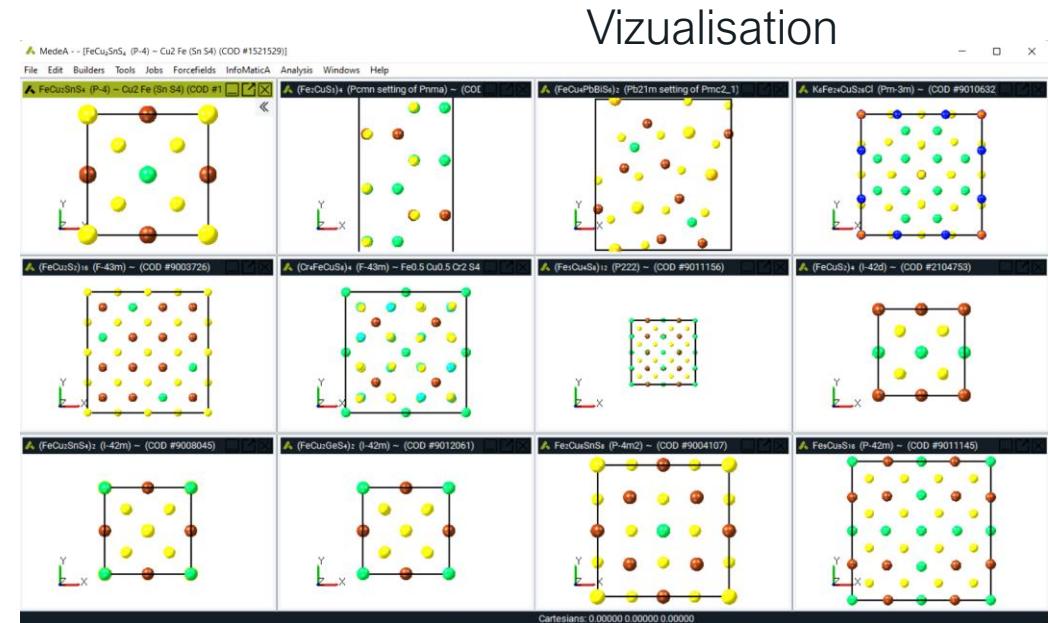
Displaying 0 of 0 hits

Databases

MedeA InfoMaticA: Search

File Edit Options MPM

ID	completeness	space group name H-M	sum	structural	name systematic
ICSD.2518	Complete	I4-2D	Cu1 Fe1 S2	Cu1 Fe1 S2	Copper iron sulfide
ICSD.67530	Complete	PCMN	Cu1 Fe2 S3	Cu1 Fe2 S3	Copper diiron sulfide
COD.1521718	Complete	F-43m	Cr2 Cu0.5 Fe0.5 S4	Cr2 Cu0.5 Fe0.5 S4	Fe0.5 Cu0.5 Cr2 S4
COD.9003724	Complete	F-43m	Cu2 Fe S2	Cu2 Fe S2	
COD.9003721	Complete	F-43m	Cu2 Fe S2	Cu2 Fe S2	
COD.9012067	Complete	I-42m	Cu2 Fe Ge S4	Cu2 Fe Ge S4	
COD.9003726	Complete	F-43m	Cu2 Fe S2	Cu2 Fe S2	
COD.9003723	Complete	F-43m	Cu2 Fe S2	Cu2 Fe S2	
COD.9000061	Complete	Pcmn	Cu Fe2 S3	Cu Fe2 S3	
COD.9008202	Complete	Pcmn	Cu Fe2 S3	Cu Fe2 S3	
COD.9004101	Complete	P-4m2	Cu6 Fe2 S8 Sn	Cu6 Fe2 S8 Sn	
COD.9008203	Complete	Pcmn	Cu Fe2 S3	Cu Fe2 S3	


Search Criteria

Require that	formula	contains any number of	atoms of	Cu
Require that	formula	contains any number of	atoms of	Fe
Require that	formula	contains any number of	atoms of	S
Require that	formula	does not contain	atoms of	H
Require that	structural completeness	complete		
Require that	--Add new criterion--			

Run search

Clear

Displaying 29 of 29 hits

MedeA: structure list editor

File Add structure(s) Display Properties QT: QSAR Toolbox

SQLite structure list file (30720 bytes): C:/Users/BenoitMinisini/OneDrive - Materials Design/Documents/etudes/molecules_of_interest/Compounds/chloro/structures/Cux

Containing 12 structure(s) and a total number of 12 configuration(s)

Display structures from: 1 to: 12 Apply

Structures Properties

Order	Name	Structural Formula	# atoms	# configurations	Symmetry	Cell parameters
1	COD.9011145	Fe9Cu9S16	34	1	P-42m	10.585 10.585 5.383 90 90 90
2	COD.9004107	Fe2Cu6SnS8	17	1	P-4m2	7.603 7.603 5.358 90 90 90
3	COD.9012061	Fe2Cu4Ge2S8	16	1	I-42m	5.325 5.325 10.51 90 90 90
4	COD.9008045	Fe2Cu4Sn2S8	16	1	I-42m	5.46 5.46 10.725 90 90 90
5	COD.2104753	Fe4Cu4S8	16	1	I-42d	5.2888 5.2888 10.4221 90 90 90
6	COD.9011156	Fe60Cu48S96	204	1	P222	10.705 10.734 31.63 90 90 90
7	COD.1521718: Fe0.5 Cu0.5 Cr2 S4	Cr16Fe4Cu4S32	56	1	F-43m	9.90705 9.90705 9.90705 90 90 90
8	COD.9003726	Fe16Cu32S32	80	1	F-43m	10.71 10.71 10.71 90 90 90
9	COD.9010632	K6Fe24Cu8S26Cl	58	1	Pm-3m	10.385 10.385 10.385 90 90 90
10	COD.9011929	Fe2Cu8Pb2B2S12	26	1	Pb21m	10.88 12.003 3.874 90 90 90
11	COD.9001496	Fe8Cu4S12	24	1	Pcmn	6.455 11.102 6.226 90 90 90
12	COD.1521529: Cu2 Fe (Sn S4)	FeCu2SnS4	8	1	P-4	5.414 5.414 5.414 90 90 90

Databases

Direct access to experimental and calculated structure data gathered over decades – more than 1,1 million structures

Builders

Rich set of builders for crystalline/amorphous/ordered systems, molecules, surfaces, interfaces, nanoparticles, polymers, fluids, solids, hybrid materials, composites...

Compute Engines

VASP, GAUSSIAN, MOPAC, LAMMPS, GIBBS

Forcefields + Forcefield Optimizer

Access to state-of-the-art Forcefields (non-reactive & reactive); open access to all FF parameters; addition of user-defined FFs; FF optimization

MedeA environment

Property Modules

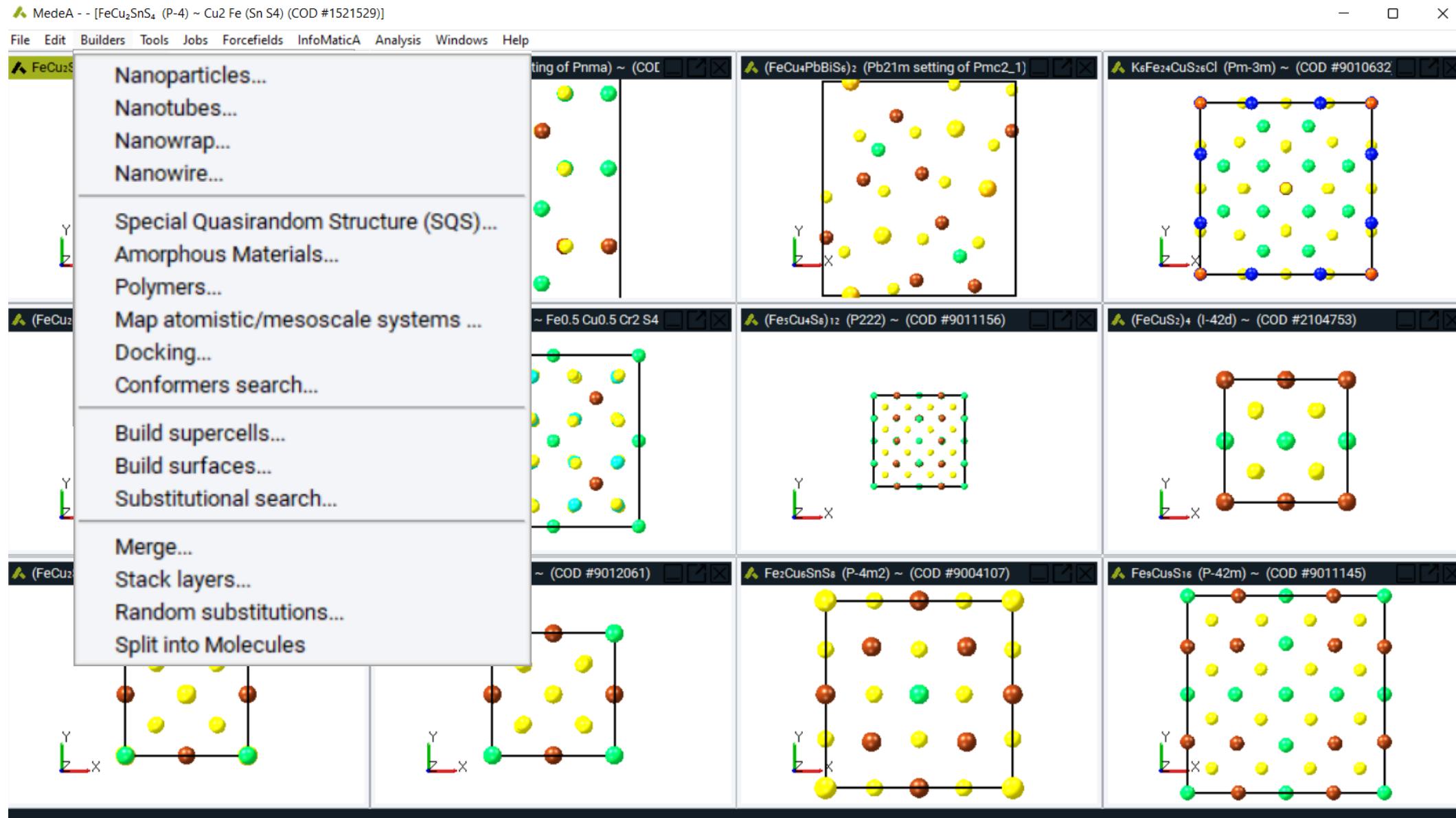
Graphical workflows & pre-configured computational protocols, to facilitate modeling, analysis, and property prediction

High Throughput

Generation of large and consistent sets of computed data & descriptors

Analysis Tools

Analysis and post-processing tools, for system characterization, visualization and analysis of calculated properties



JobServer & TaskServer

Automated processing of compute protocols & workflows; Reliable long-term archiving & accounting of computed data

Builders

Random substitution

MedeA - - [FeCu₂SnS₄]

MedeA: random substitutions

Random substitutions

You can add several substitution rules that will consecutively apply to the result of previous rules, following the top down order they appear. If for one of the rules no matching atoms are found you can choose to ignore it, or dismiss the whole substitution, i.e. no structure will be created. You can ask for several draws resulting in several new random structures.

Create 1 random structure(s) Stop on unmatched rules

For microporous materials, obey Lowenstein's rule, if possible (requires bonds)

Create new structures as new windows Append to structure list

Substitute atoms of Cu with atoms of Si isotope: Average mass

atoms of: all, exactly, percent of

atoms of: all, atoms whose name, atoms whose subset, atoms from group, atoms from period, alkali metals, alkaline earths, halogens, transition metals, lanthanides

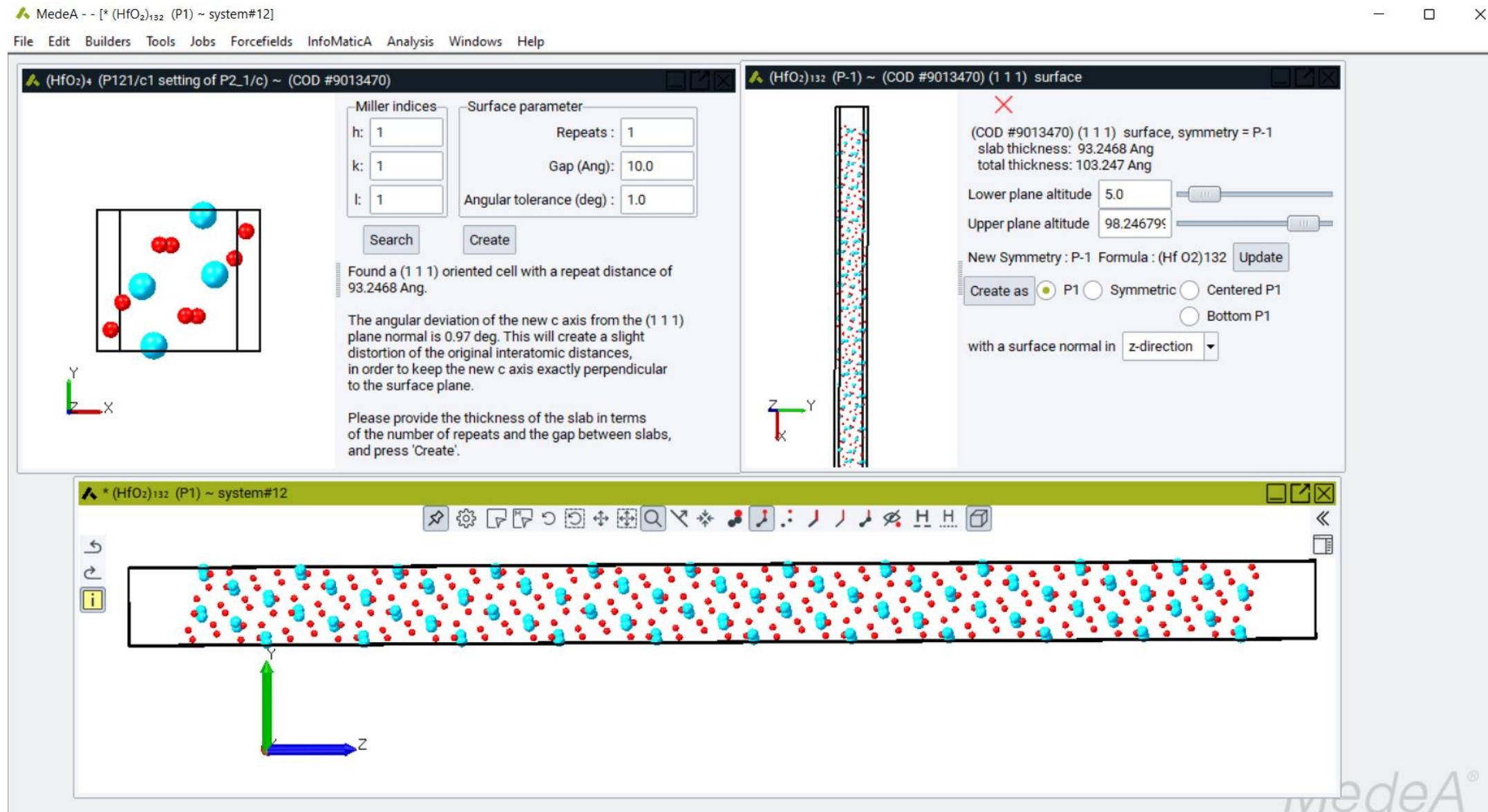
atoms of: vacancies

isotope: Average mass, Natural mix, 28, 29, 30

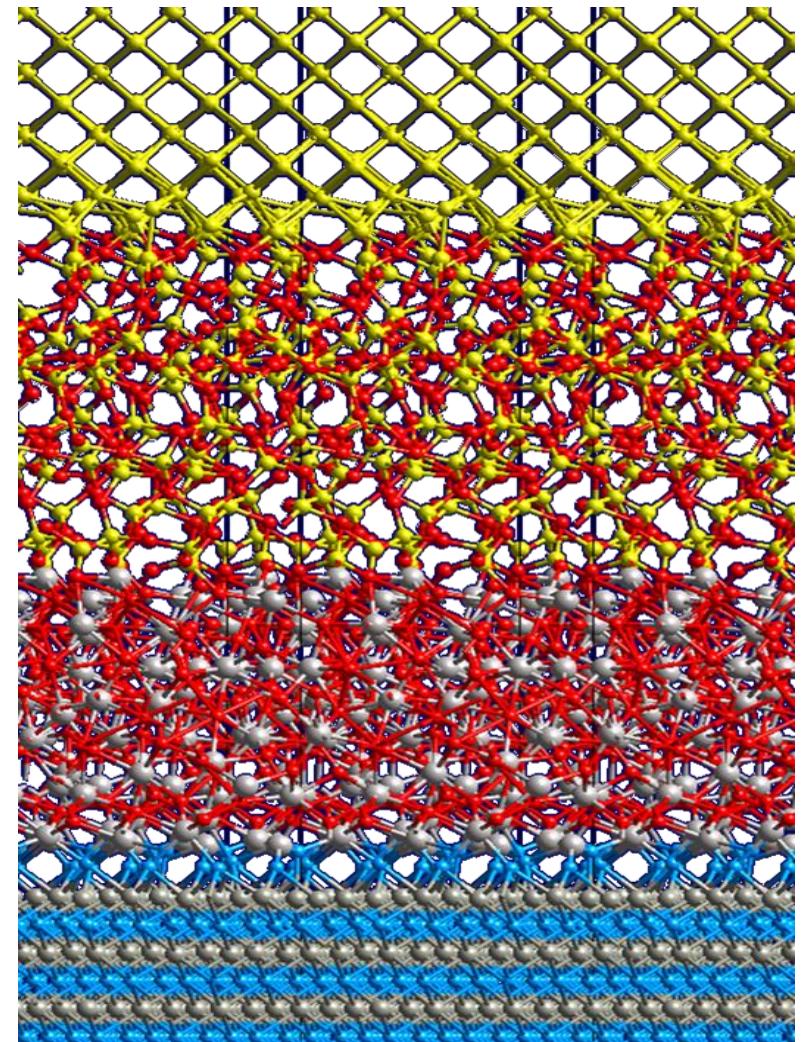
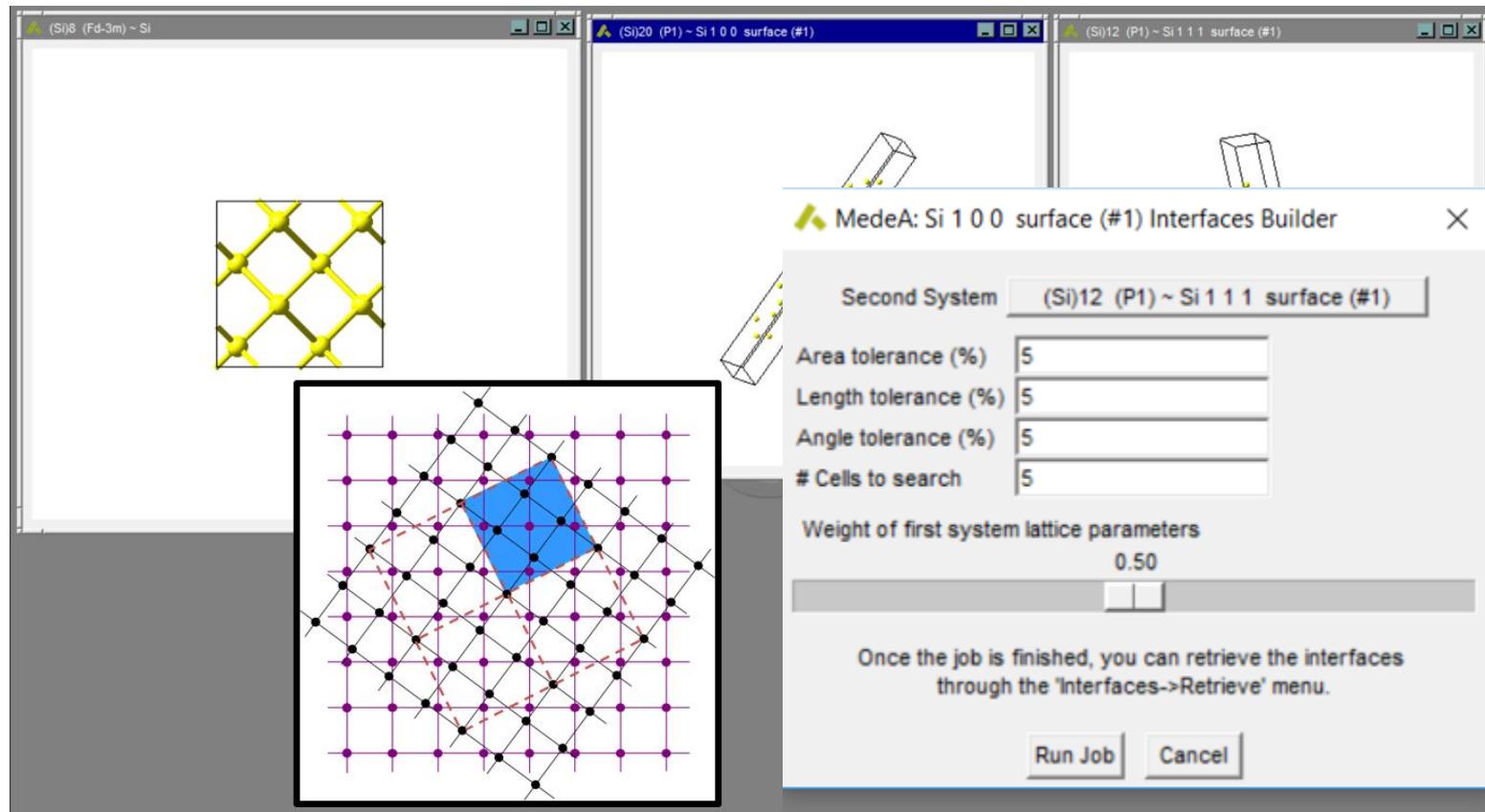
-3m ~ (COD #9010632)

(COD #2104753)

~ (COD #9011145)


Y Z X

Y Z X



Y Z X

Y Z X

Surface

Interface builder

Databases

Direct access to experimental and calculated structure data gathered over decades – more than 1,1 million structures

Builders

Rich set of builders for crystalline/amorphous/ordered systems, molecules, surfaces, interfaces, nanoparticles, polymers, fluids, solids, hybrid materials, composites...

Compute Engines

VASP, GAUSSIAN, MOPAC, LAMMPS, GIBBS

Forcefields + Forcefield Optimizer

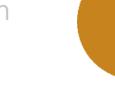
Access to state-of-the-art Forcefields (non-reactive & reactive); open access to all FF parameters; addition of user-defined FFs; FF optimization

Property Modules

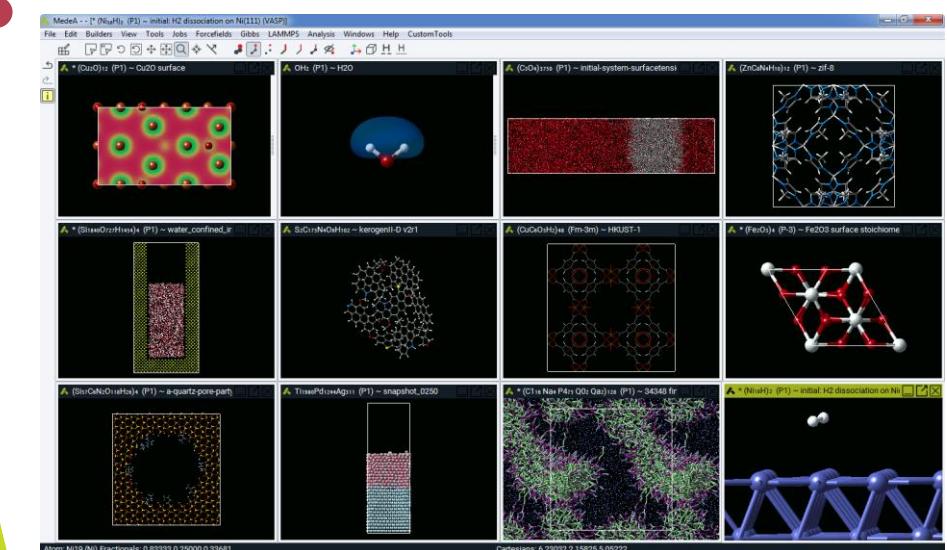
Graphical workflows & pre-configured computational protocols, to facilitate modeling, analysis, and property prediction

High Throughput

Generation of large and consistent sets of computed data & descriptors


Analysis Tools

Analysis and post-processing tools, for system characterization, visualization and analysis of calculated properties



JobServer & TaskServer

Automated processing of compute protocols & workflows; Reliable long-term archiving & accounting of computed data

MedeA environment

MedeA® VASP GUI

MedeA : Run VASP 6 X

Calculation Functional/Potential SCF DOS/Optic/Tensors Band Structure Advanced/Restart Add to Input Preview Input

Type of calculation **Single Point**

- Single Point**
- Structure Optimization
- Molecular Dynamics
- Optical Spectra via Time Evolution
- Time-dependent Hybrid / DFT
- Quasiparticle Spectra (GW)
- Quasiparticle Spectra (Low Scaling GW)
- Accurate Energy (MP2)
- Accurate Energy (ACFDT-RPA)
- Accurate Forces (Low Scaling ACFDT-RPA)
- Electron-phonon Coupling
- MT -- Elastic Properties

Properties

- (Pseudo, difference, spin) charge density
- (Total, valence) charge density, Bader analysis
- Total local potential
- Band structure
- Electron localization function
- Density of states
- Wave functions
- Optical spectra
- Electric field gradients
- Elastic constants
- Hyperfine parameters
- Zone center phonons
- Work function (surfaces only)
- Response tensors
- NMR: chemical shifts
- Energy of formation

Interaction

Functional **Density functional**

DFT exchange-correlation **GGA-PBE**

Van der Waals **None**

Magnetism **Defined by model**
to be non-magnetic

General Setup

Precision **Normal**

Increase planewave cutoff (cell optimizations)

Planewave cutoff (default): 229.943 eV

Planewave cutoff: eV

Projection **Reciprocal space**

Title: (Au)4 (Fm-3m) ~ (COD #9011612) (VASP)

Run Close Write input files Restore defaults Restore from job

MedeA® VASP GUI

MedeA : Run VASP 6 X

Calculation Functional/Potential SCF DOS/Optic/Tensors Band Structure Advanced/Restart Add to Input Preview Input

K-mesh in Brillouin Zone

Input mode: set spacing between k-points

Spacing of k-points: 0.25 1/Ång

Shift origin to Gamma Use odd size grids

Actual mesh and spacing

Constraint Mesh points Spacing (1/Ång)

x:	11	0.243	
y:	= x	11	0.243
z:	= x	11	0.243

K-mesh for response, NMR, elastic constants, phonons as for DOS and optics

Integration Scheme for DOS and Optical Spectra

Type of smearing: Tetrahedron method

Integration Scheme for Response Tensors and NMR

Type of smearing: Tetrahedron with Bloechl corrections

Integration Scheme for Phonons and Elastic Tensors

Type of smearing: Methfessel-Paxton

Smearing width: 0.2 eV

Order of smearing function: 1

Parameters for DOS and Optical Spectra

DOS projection onto: automatic choice

Number of grid points: 3000

Minimum energy: eV

Maximum energy: eV

Number of bands (default): 9

Number of bands:

Shift parameter: 0.1

Print optical matrix elements

Parameters for NMR chemical shifts

Planewave cutoff for NMR (default): 344.915 eV

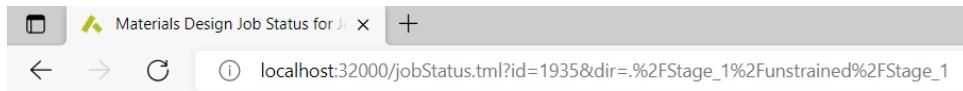
Planewave cutoff for NMR: eV

Parameters for Zone Center Phonons

Displacement: 0.015 Ång

Number of displacements: 1

Parameters for Total Charge Density


Refine the Fourier grid by: 0 %

Title: (Au)4 (Fm-3m) ~ (COD #9011612) (VASP)

Run Close Write input files Restore defaults Restore from job

MedeA® VASP Output

Materials Design Job Status for Job 1935

localhost:32000/jobStatus.tml?id=1935&dir=%2FStage_1%2Funstrained%2FStage_1

- Trajectory

Available Output Files in ./Stage_1/unstrained/Stage_1

File	Size	Download
OSZICAR.out	1.1 kB	as plain text
OUTCAR.out	61.6 kB	as plain text
VASP.out	2.2 kB	as plain text

Other Files in ./Stage_1/unstrained/Stage_1 (caution: may be binary!)

File	Size	Download
CONTCAR	536 B	as plain text
EIGENVAL	12.0 kB	as plain text
IBZKPT	1.4 kB	as plain text
INCAR	584 B	as plain text
Job.xml	1.5 kB	as plain text
KPOINTS	51 B	as plain text
POSCAR	259 B	as plain text
POTCAR	451.7 kB	as plain text
PROCAR	57.2 kB	as plain text
XDATCAR	306 B	as plain text
initial.sci	1.5 kB	as plain text
minimized.sci	1.5 kB	as plain text
script	2.5 kB	as plain text
stdout	1.7 kB	as plain text

Follow [this link](#) for direct access to the directory, which is useful for downloading files

localhost:32000/jobOutput.tml?id=1935&output=%2FStage_1%2Funstrained.out

VASP 6 CALCULATION PROTOCOL:

1. Geometry optimization (atom positions)

VASP parameters

This is a calculation based on density functional theory and the GGA-PBE exchange-correlation functional for describing the interactions.

Since no magnetic moments are in the model, this is a non-magnetic calculation using 'normal' precision and a default planewave cutoff energy of 295.446 eV.

The electronic iterations convergence is 1.00E-005 eV using the Normal (blocked Davidson) algorithm and reciprocal space projection operators.

The requested k-spacing is 0.5 per Angstrom, which leads to a 5x5x4 mesh. This corresponds to actual k-spacings of 0.449 x 0.449 x 0.428 per Angstrom. The k-mesh is forced to be centered on the gamma point.

Using first order Methfessel-Paxton smearing with a width of 0.2 eV.

Using version 4.0 GGA-PBE / PAW potentials:

Au	PAW_PBE Au 04Oct2007
Cu	PAW_PBE Cu 22Jun2005

There are 18 symmetry-unique k-points
The plane wave cutoff is 295.45 eV

VASP energy: -7.145475 eV for AuCu cell

Initial VASP energy: -7.145475 eV for AuCu cell
Relaxation energy: 0.000000 eV gained after 1 optimization steps.

Electronic contributions:

	Empirical Formula	Cell
	AuCu	AuCu
VASP Energy	-7.145475	-7.145475 eV
=	-689.433	-689.433 kJ/mol

Cell parameters:

Parameter	Value
a	2.800000
b	2.800000
c	3.670000
alpha	90.000000
beta	90.000000
gamma	90.000000

MedeA® VASP Ressources

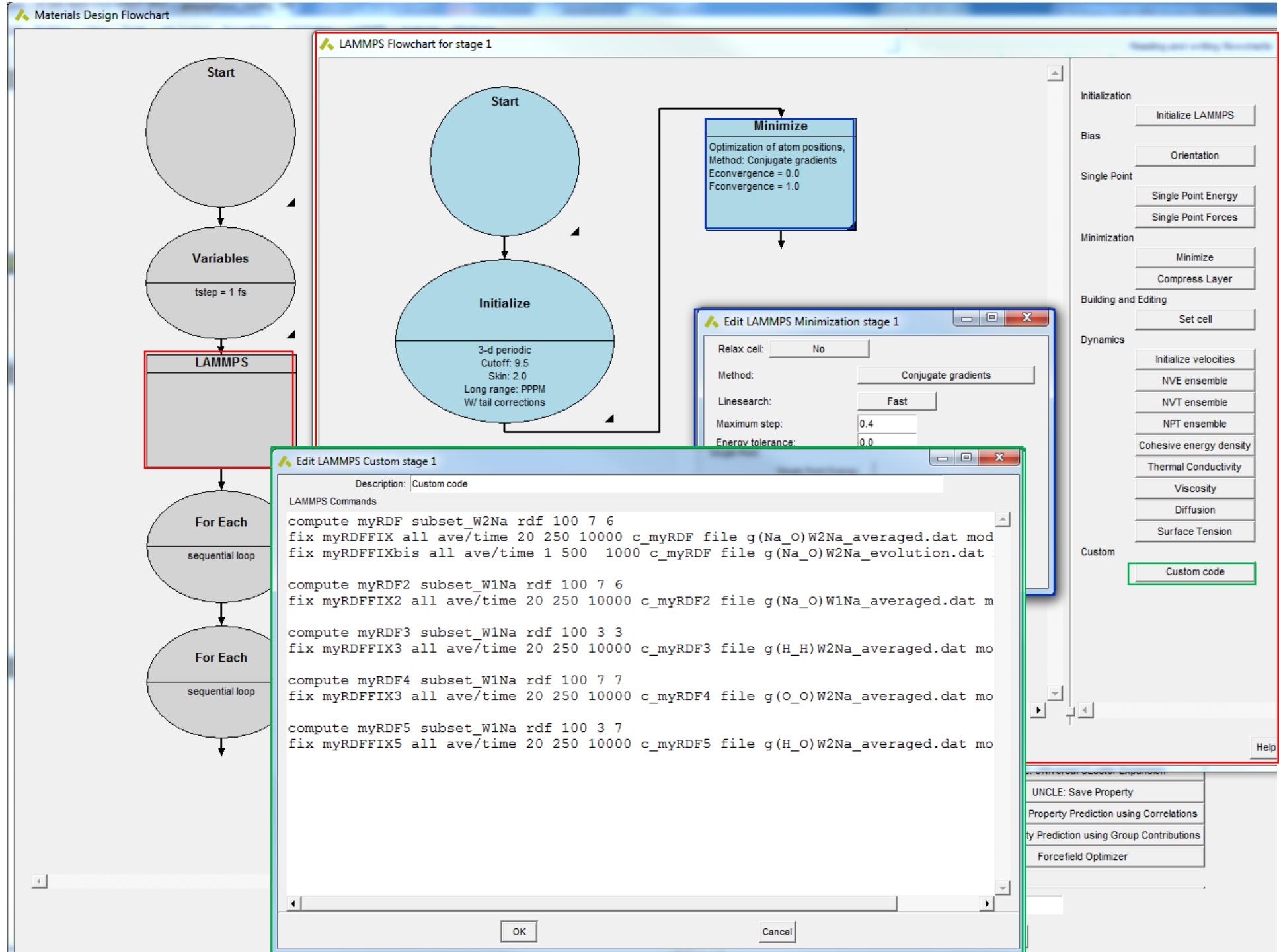
► Tutorials:

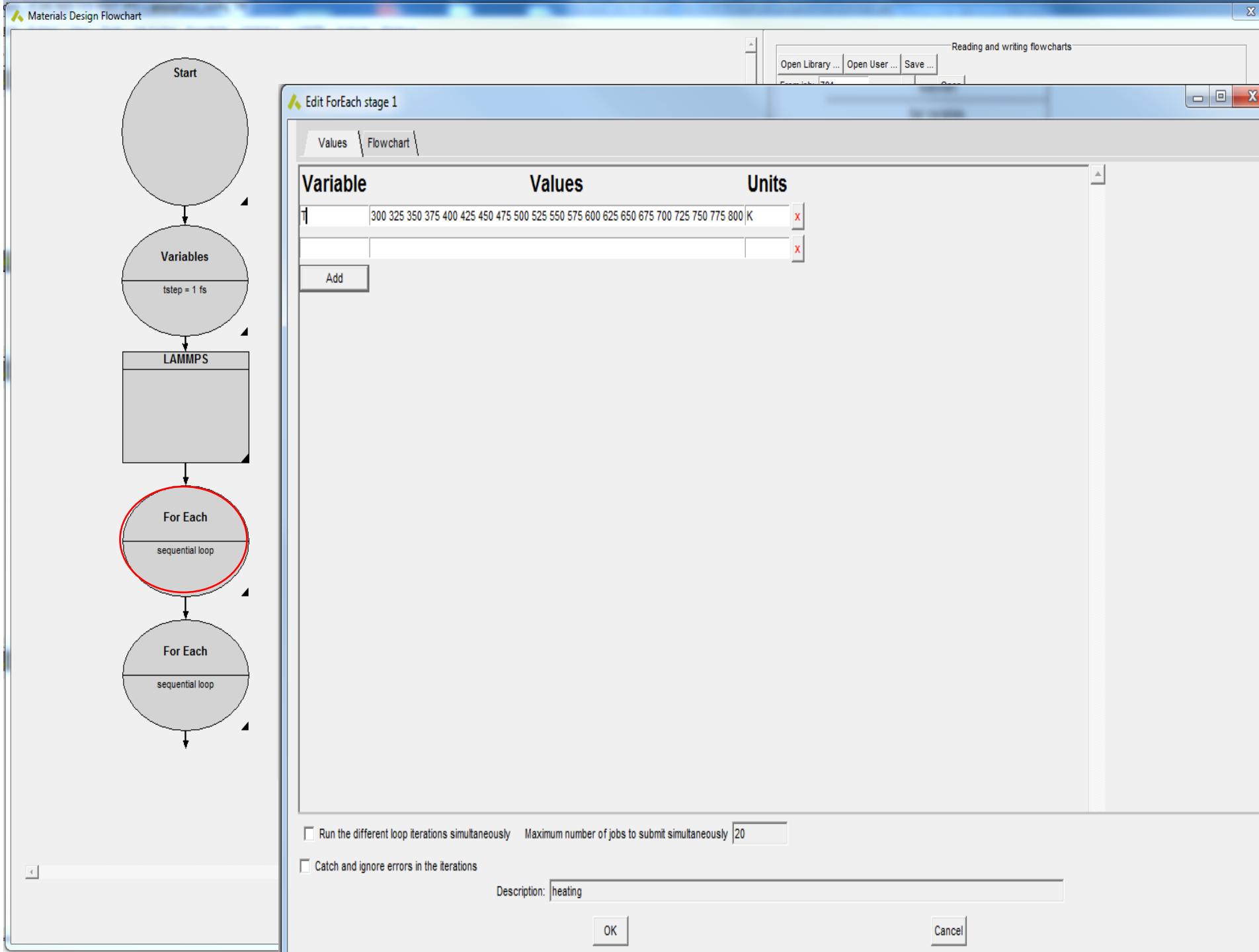
- Introduction to MedeA VASP: Learn how to set up and run VASP first principles calculations with MedeA
- Introduction to MedeA MT: Elastic Properties of TaN: Learn how to calculate the mechanical properties of crystals with MedeA MT and MedeA VASP
- Introduction to MedeA Phonon: Vibrational Properties of Silicon: Learn how to calculate the vibrational spectrum of silicon using MedeA Phonon with VASP and LAMMPS
- Introduction to MedeA UNCLE: Cluster expansion calculation of Au/Cu alloy: Learn how to set up cluster expansion calculations with MedeA UNCLE for Au/Cu alloy
- Introduction to MedeA FFO: Optimizing Buckingham Forcefield for LiNbO₃: Learn how to optimize a Buckingham forcefield for LiNbO₃ with MedeA Forcefield Optimizer
- Thermoelectrics: Seebeck Coefficient of Bismuth Chalcogenides: This tutorial describes how to calculate the Seebeck coefficient of the material Bi₂Te₃ with MedeA Electronics and MedeA VASP
- Calculate the Color of Cadmium Selenide and Cadmium Sulfide: Learn how to calculate the optical properties, such as color, of materials using an ab initio approach with MedeA VASP
- Electron-Phonon Coupling: Phonon Induced Change of the GaAs Band Gap as a Function of Temperature: Learn how to use the single displacement approach by Zacharias and Giustino to calculate the phonon-induced temperature-dependent change of the GaAs band gap with MedeA VASP 6
- Obtain Accurate Heat of Formation for SiC with ACFDT RPA: Learn how to calculate the heat of formation of silicon carbide using ACFDT RPA with MedeA VASP 6
- Thermal Expansion of ZnO: Learn how to calculate the thermal expansion of materials with MedeA

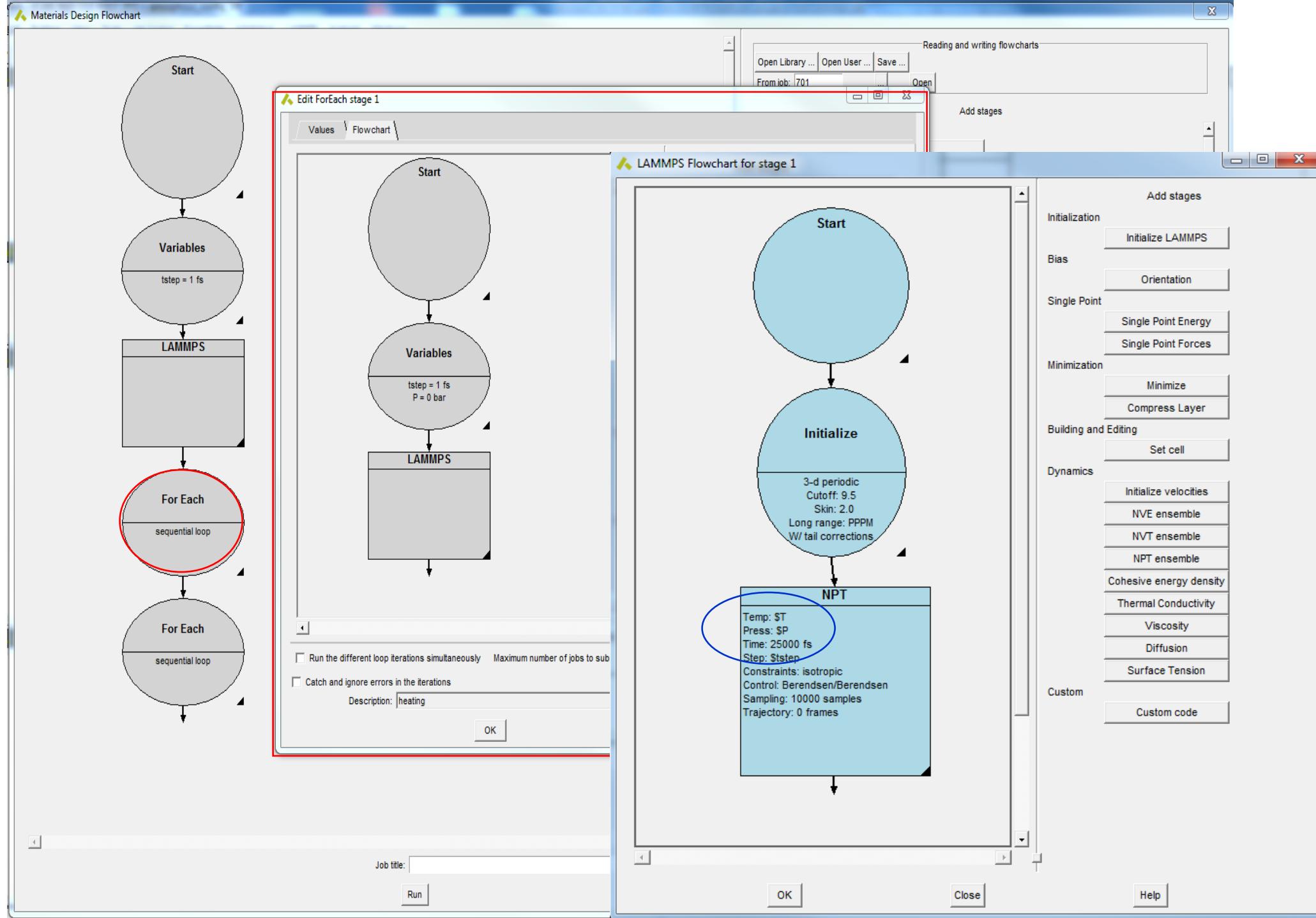
► Webinars:

- VASP in MedeA: A Fast Way- From Models to Reliable Results: <http://my.materialsdesign.com/webinar-31>
- The Color of Materials: Value from Computed Optical Properties: <http://my.materialsdesign.com/webinar-25>
- Atomistic Simulations as a Driver of Industrial Innovation: <http://my.materialsdesign.com/webinar-18>
- Predicting Elastic Properties Using Ab Initio and Forcefield Based Simulations: <http://my.materialsdesign.com/webinar-15>

and more..


LAMMPS GUI and Flowcharts



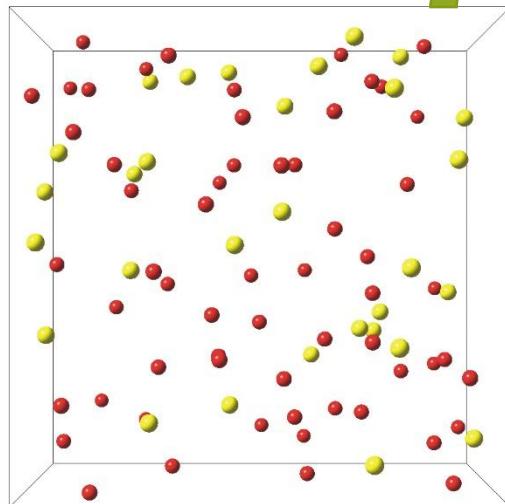

- Powerful flowchart interface lets you easily set up complex calculations by connecting stages
 - A stage can be a computation, e.g. energy minimization, NVT and NPT dynamics, as well as an operation such as setting the density to that computed by a previous stage, or building a larger simulation box
- Any number of stages can be chained together to perform a detailed, reproducible calculation.
- Flowcharts from any previous calculation can be edited and run again, even on different molecules
 - Capture best practices, and share validated computational strategies with colleagues

Custom Stage
available
for LAMMPS
advances
users

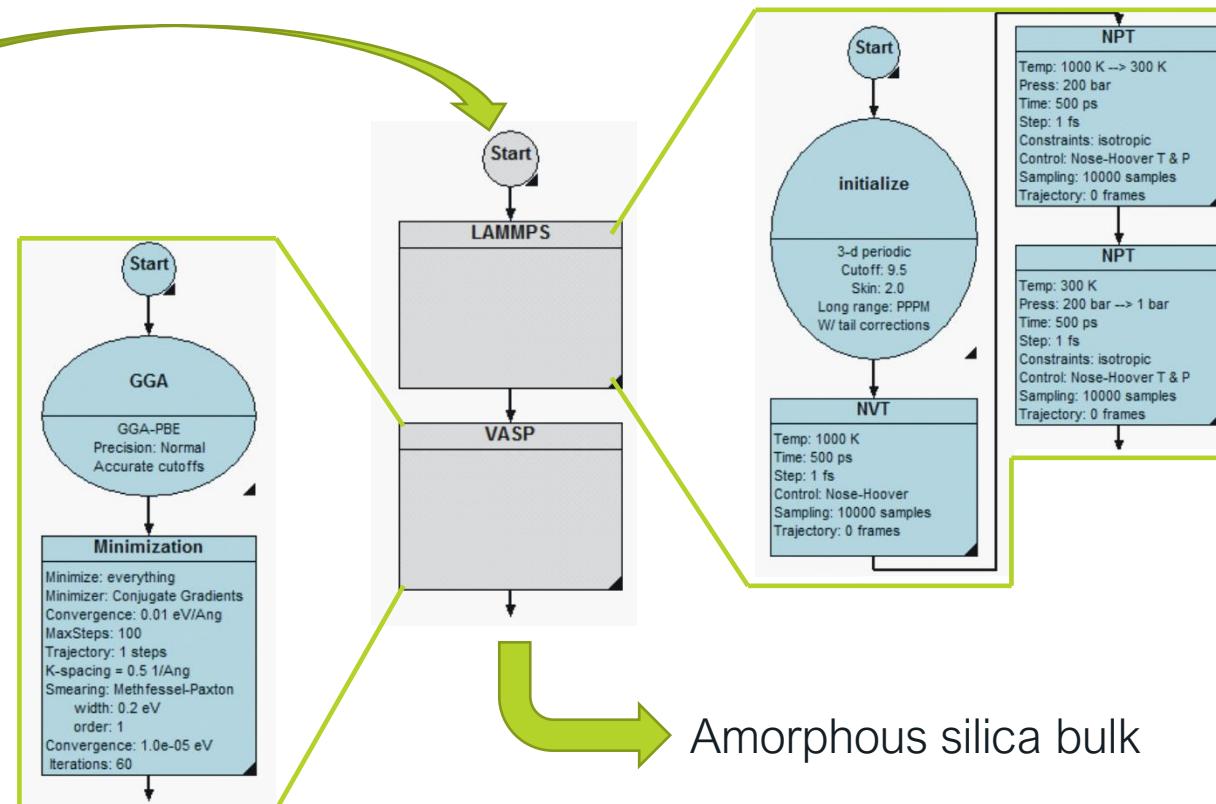
MedeA® LAMMPS Ressources

► Tutorials:

- Introduction to MedeA LAMMPS: Learn how to set up and run LAMMPS molecular dynamics simulations with MedeA
- Importing External Potential Parameters into MedeA: Learn how to import external potential parameters and files into MedeA
- Deposition of O₂ on a Si Surface with Reactive Potentials: Learn how to perform deposition simulation with reactive potentials using MedeA Deposition
- Cold Spray of Cu Nanoparticles on the Cu Surface: Learn how to simulate the cold spray of metal nanoparticles onto metal surfaces with MedeA Deposition
- Plastic Deformation and Fracture of Single-walled Carbon Nanotube: Learn how to set up and run plastic deformation and fracture simulations with MedeA Deformation
- Mesoscale Simulations of Water and Octane: Learn how to set up and run a mesoscale simulation of a mixture with MedeA
- Self-assembly of Lipid Bilayer: Learn how to run a mesoscale molecular dynamics simulation of self-assembly on a time-scale of a microsecond with MedeA
- Mechanical Properties of a Thermoset Through Mesoscale Simulations: Learn how to predict mechanical properties of a thermoset through mesoscale simulations


► Webinars:

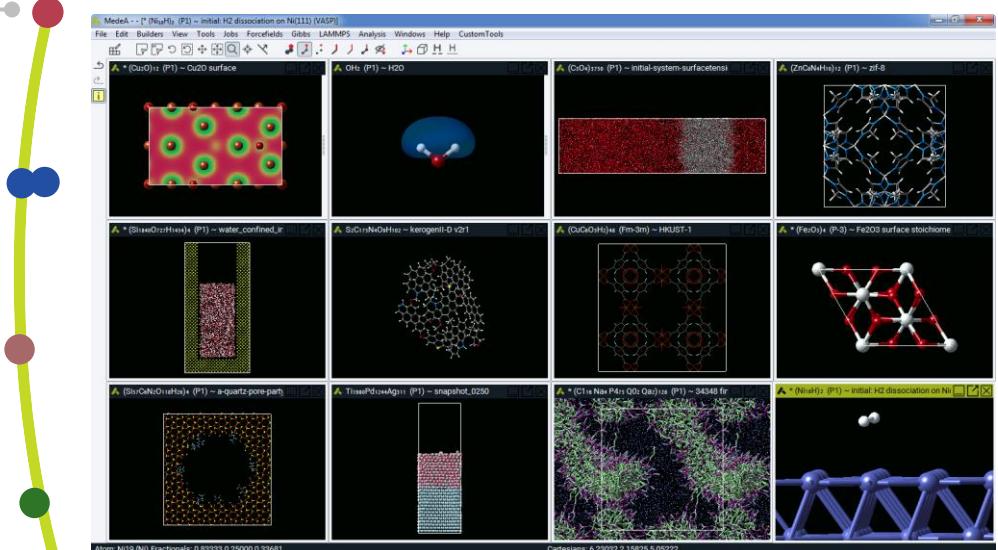
- MedeA 3.1: <http://my.materialsdesign.com/webinar-38>
- MedeA Mesoscale: <http://my.materialsdesign.com/webinar-36>
- MedeA Elastic Properties and Deformation: <http://my.materialsdesign.com/webinar-33>
- MedeA Deposition: <http://my.materialsdesign.com/webinar-26>
- MedeA ReaxFF: <http://my.materialsdesign.com/webinar-17>
- MedeA LAMMPS: <http://my.materialsdesign.com/webinar-12>
- MedeA Forcefields: <http://my.materialsdesign.com/webinar-10>



Interoperability

1. Create 30(Si O₂) cell at low density with Amorphous Builder – Forcefield is cvff_aug

2. NVT dynamic annealing with LAMMPS followed by NPT equilibration and VASP geometry optimization



Databases

Direct access to experimental and calculated structure data gathered over decades – more than 1,1 million structures

MedeA environment

Builders

Rich set of builders for crystalline/amorphous/ordered systems, molecules, surfaces, interfaces, nanoparticles, polymers, fluids, solids, hybrid materials, composites...

Compute Engines

VASP, GAUSSIAN, MOPAC, LAMMPS, GIBBS

Forcefields + Forcefield Optimizer

Access to state-of-the-art Forcefields (non-reactive & reactive); open access to all FF parameters; addition of user-defined FFs; FF optimization Machine Learning Potential Generator

Property Modules

Graphical workflows & pre-configured computational protocols, to facilitate modeling, analysis, and property prediction

High Throughput

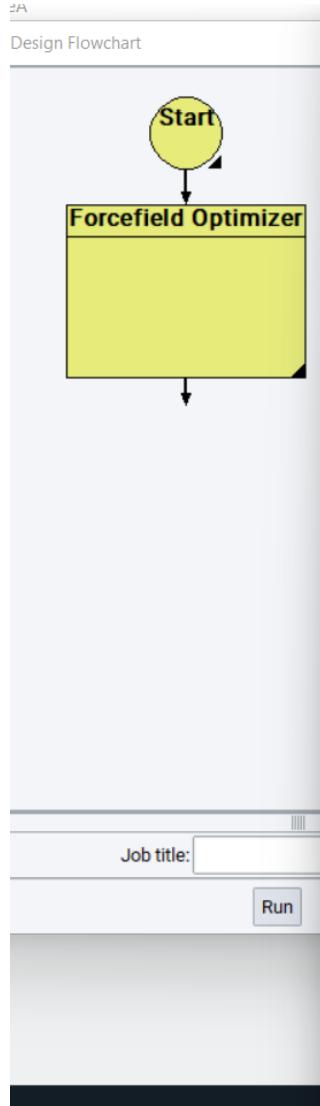
Generation of large and consistent sets of computed data & descriptors

Analysis Tools

Analysis and post-processing tools, for system characterization, visualization and analysis of calculated properties

JobServer & TaskServer

Automated processing of compute protocols & workflows; Reliable long-term archiving & accounting of computed data


Potentials - Forcefields

- ▶ Metallic forcefields:
 - EAM
 - All LAMMPS eam, eam/fs...
 - MEAM
- ▶ Inorganic forcefields:
 - Buckingham
 - BKS
 - Clay-FF
 - CVFF_aug
- ▶ Semiconductor forcefields:
 - Tersoff
 - Stillinger-Weber
- ▶ Organic (valence) forcefields:
 - PCFF/PCFF+*
 - Compass/Compass+
 - OPLS-AA/OPLS-AA+*
 - AUA/AUA+ *
 - Trappe+ *
- ▶ Reactive forcefields
 - COMB3
 - ReaxFF
- ▶ Mesoscale
 - Martini
 - Shinoda

- Increased simulation coverage and accuracy from the state of art forcefields for molecular dynamics and Monte Carlo
- **Automatic assignment of atom types and charges**
- **Customizable forcefields:** safely add and change parameters when needed, changes are kept separate and not overwritten by updates; version tracking to keep all modifications accessible for evaluation and comparison
- Materials Design's experts provide industrial level support of forcefields shipped
- The complexities of developing and tuning forcefields requires a reliable and powerful computing platform. MedeA's architecture with the JobServer/TaskServer is the right environment to get things done.

Forcefield Optimizer

Edit Forcefield Optimizer stage 1

Optimizing forcefield Zhou_2004

Fitting Data Forcefield Optimization Options Flowchart

Fitting systems and properties to be fit have to be imported from a structure list file (or a trajectory). If imported structures have already correctly assigned atom types with respect to the current forcefield, these types will be used. Atoms without forcefield types will be assigned automatically.

Import

Fitting properties

E include Weight

Forces include Weight

Stress include Weight

Energy fitting

Direct energy fit

Energy shift(s) in eV per atom types:

Fe

Fit energy difference with first structure

104 fitting structures. All defined as training set

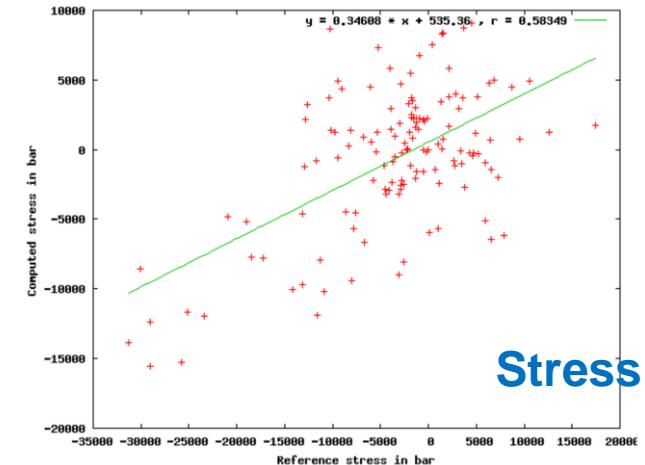
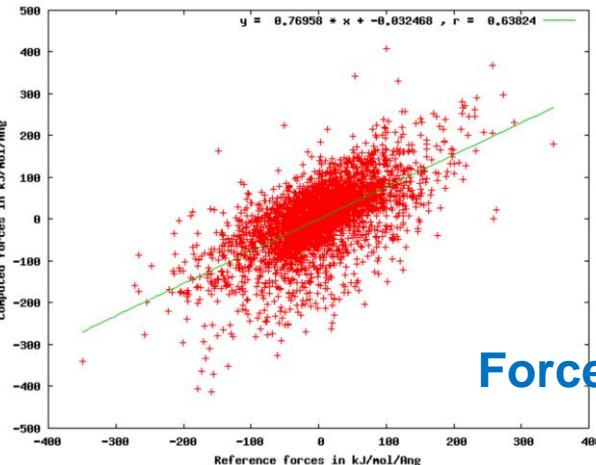
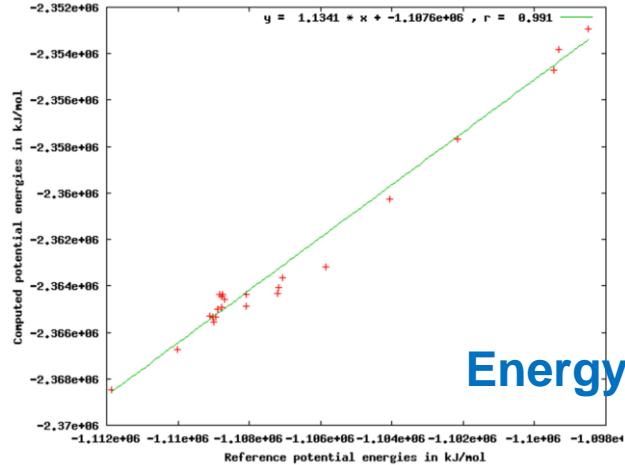
Name	Used as	Weight	Formula	# atoms	E (eV)
Fe-1m-3m-CCMR74117-min_3x3x3_2	Training	1.0	Fe54	54	-443.882
Fe-1m-3m-CCMR74117-min_3x3x3	Training	1.0	Fe54	54	-428.897
Fe-1m-3m-CCMR74117-min_3x3x3_2	Training	1.0	Fe54	54	-441.614
Fe-1m-3m-CCMR74117-min_3x3x3	Training	1.0	Fe54	54	-441.614
Fe-1m-3m-CCMR74117-min_3x3x3_2	Training	1.0	Fe54	54	-441.614
Fe-1m-3m-CCMR74117-min_3x3x3	Training	1.0	Fe54	54	-437.87
Fe-1m-3m-CCMR74117-min_3x3x3_2	Training	1.0	Fe54	54	-442.952
Fe-1m-3m-CCMR74117-min_3x3x3	Training	1.0	Fe54	54	-442.952
Fe-1m-3m-CCMR74117-min_3x3x3_2	Training	1.0	Fe54	54	-442.952
Fe-1m-3m-CCMR74117-min_3x3x3	Training	1.0	Fe54	54	-442.558
Fe-1m-3m-CCMR74117-min_3x3x3_2	Training	1.0	Fe54	54	-443.68
Fe-1m-3m-CCMR74117-min_3x3x3	Training	1.0	Fe54	54	-443.68
Fe-1m-3m-CCMR74117-min_3x3x3_2	Training	1.0	Fe54	54	-443.68
Fe-1m-3m-CCMR74117-min_3x3x3	Training	1.0	Fe54	54	-442.707

OK

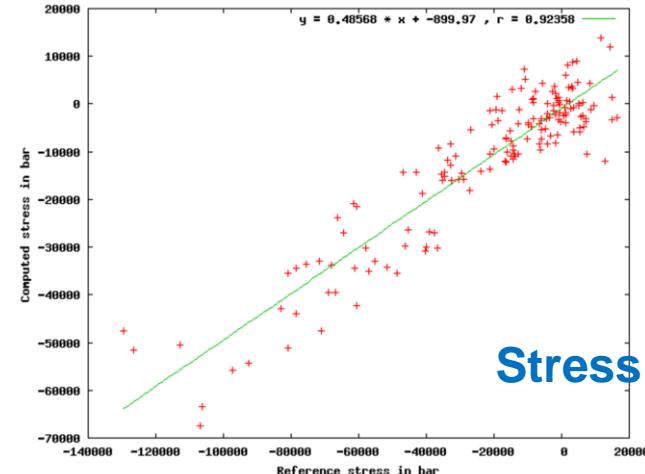
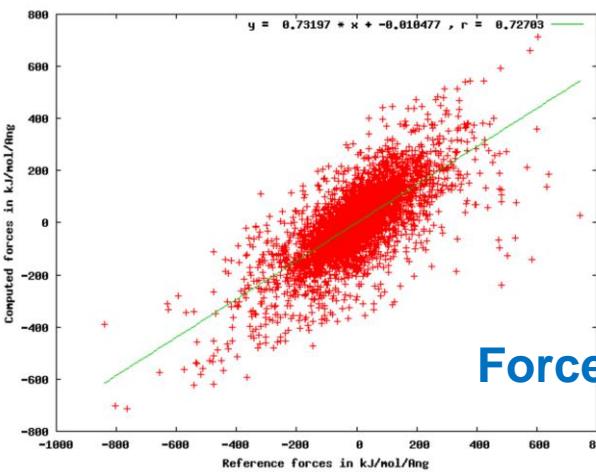
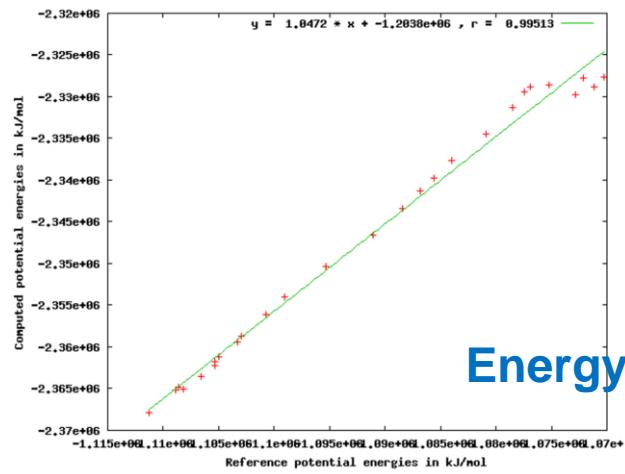
Edit Forcefield Optimizer stage 1

Optimizing forcefield Zhou_2004

Fitting Data Forcefield Optimization Options Flowchart




Type: EAM Functional Form: zhou

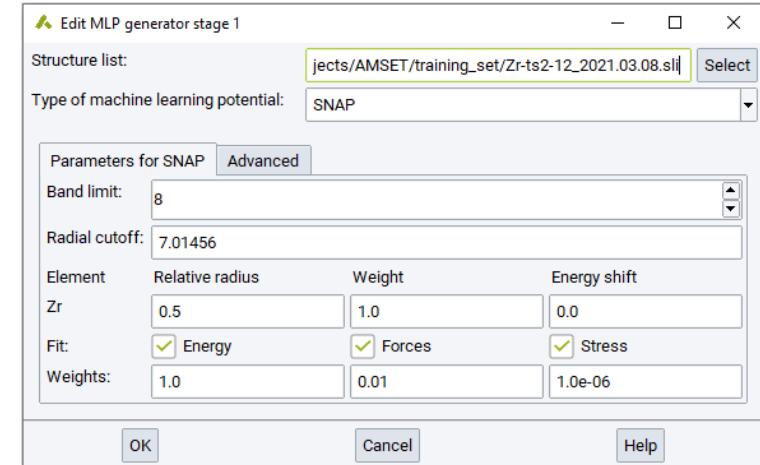
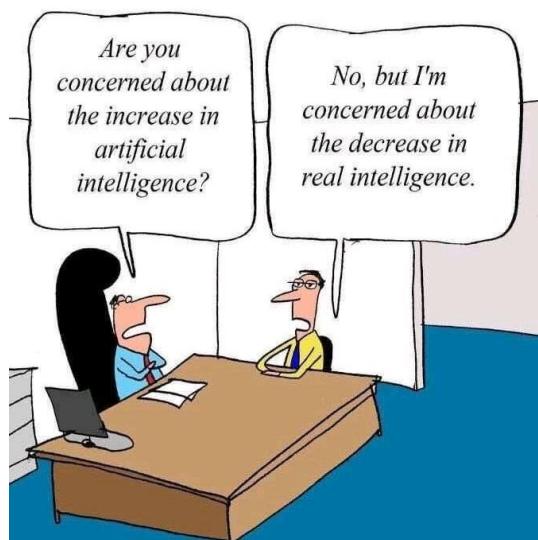
Types	Symbol	Units	Value	Optimize	Bounded	Lower Bound	Upper Bound
Fe	re	Ang	2.481987	<input type="checkbox"/>	<input checked="" type="checkbox"/>	0.002	20
	fe		1.885957	<input type="checkbox"/>	<input checked="" type="checkbox"/>	0.002	20
	pe		20.04146	<input type="checkbox"/>	<input checked="" type="checkbox"/>	0.02	200
	ps		20.04146	<input type="checkbox"/>	<input checked="" type="checkbox"/>	0.02	200
	a		9.81827	<input type="checkbox"/>	<input checked="" type="checkbox"/>	0.01	100
	b		5.236411	<input type="checkbox"/>	<input checked="" type="checkbox"/>	0.005	50
	A		0.392811	<input type="checkbox"/>	<input checked="" type="checkbox"/>	0.0004	4
	B		0.646243	<input type="checkbox"/>	<input checked="" type="checkbox"/>	0.0006	6
	k		0.170306	<input type="checkbox"/>	<input checked="" type="checkbox"/>	0.0002	2
	l		0.340613	<input type="checkbox"/>	<input checked="" type="checkbox"/>	0.0003	3
	Fn0		-2.534992	<input type="checkbox"/>	<input checked="" type="checkbox"/>	-30	-0.003
	Fn1		-0.059605	<input type="checkbox"/>	<input checked="" type="checkbox"/>	-0.6	-6e-005
	Fn2		0.193065	<input type="checkbox"/>	<input checked="" type="checkbox"/>	0.0002	2
	Fn3		-2.282322	<input type="checkbox"/>	<input checked="" type="checkbox"/>	-20	-0.002
	F0		-2.54	<input type="checkbox"/>	<input checked="" type="checkbox"/>	-30	-0.003
	F1		0	<input type="checkbox"/>	<input checked="" type="checkbox"/>	0	1
	F2		0.200269	<input type="checkbox"/>	<input checked="" type="checkbox"/>	0.0002	2
	F3		-0.14877	<input type="checkbox"/>	<input checked="" type="checkbox"/>	-1	-0.0001




Forcefield Optimizer

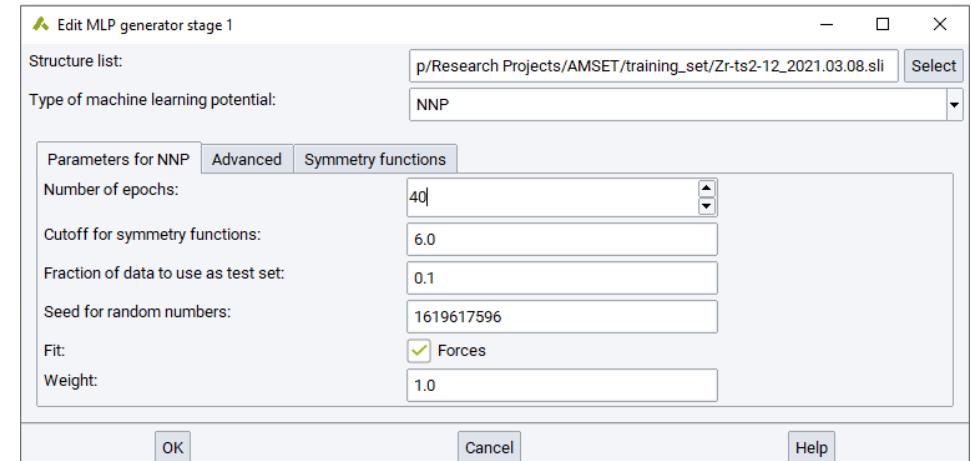
- Examine fitting output graphs

Training

Validation

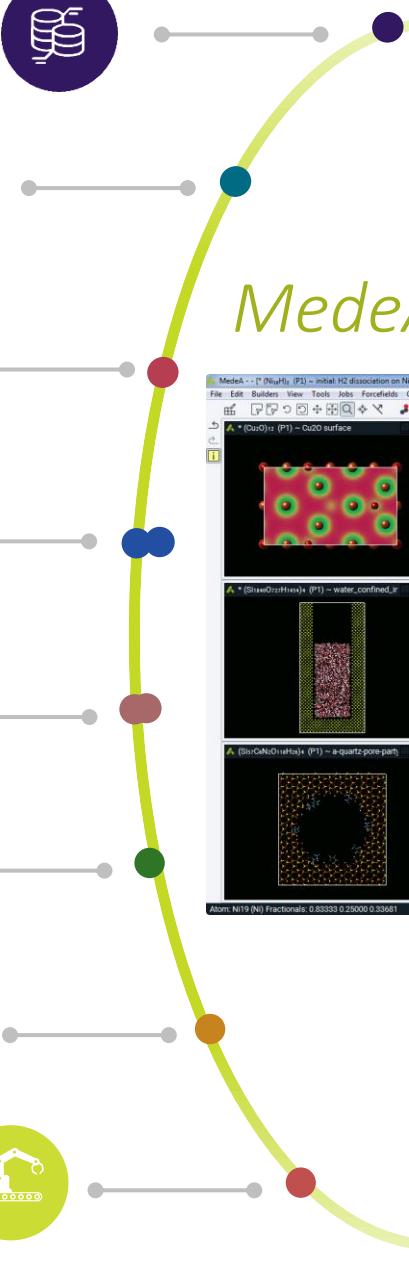



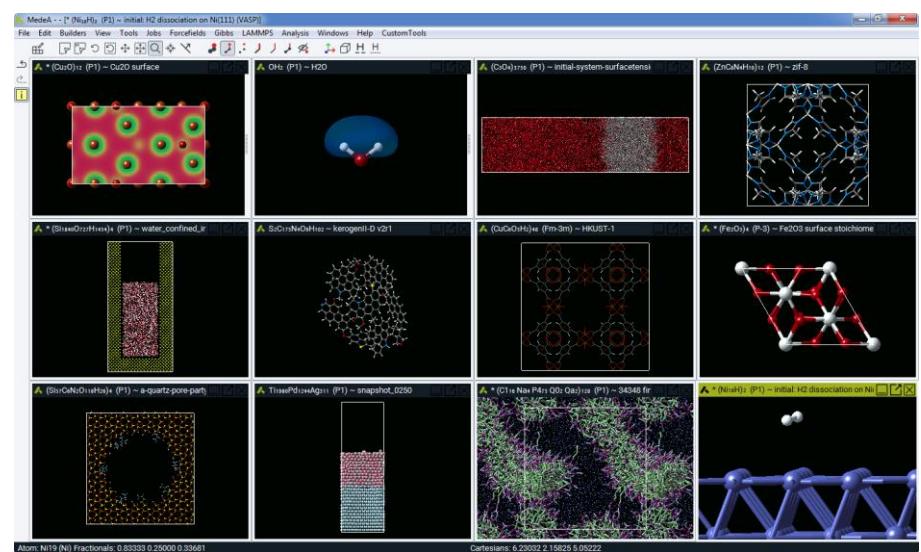
Machine Learning Potential


Build a model

Use VASP to run an ab initio MD simulation

Use the MD trajectory to train a SNAP MLP


► Spectral Neighbor Analysis Potential (SNAP)


► Neural Network Potential (NNP)

Databases

Direct access to experimental and calculated structure data gathered over decades – more than 1,1 million structures

MedeA environment

Builders

Rich set of builders for crystalline/amorphous/ordered systems, molecules, surfaces, interfaces, nanoparticles, polymers, fluids, solids, hybrid materials, composites...

Compute Engines

VASP, GAUSSIAN, MOPAC, LAMMPS, GIBBS

Forcefields + Forcefield Optimizer

Access to state-of-the-art Forcefields (non-reactive & reactive); open access to all FF parameters; addition of user-defined FFs; FF optimization Machine Learning Potential Generator

Property Modules

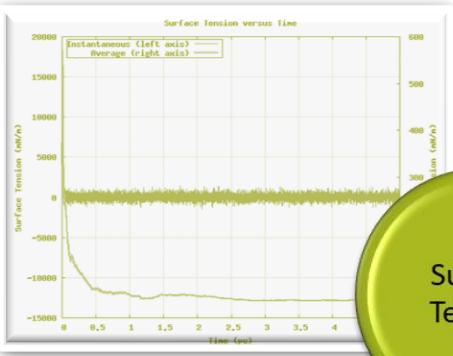
Graphical workflows & pre-configured computational protocols, to facilitate modeling, analysis, and property prediction

High Throughput

Generation of large and consistent sets of computed data & descriptors

Analysis Tools

Analysis and post-processing tools, for system characterization, visualization and analysis of calculated properties



JobServer & TaskServer

Automated processing of compute protocols & workflows; Reliable long-term archiving & accounting of computed data

Properties Modules

MedeA®
LAMMPS

Surface Tension

Cohesive energy density

Diffusion

Viscosity

Mechanical properties

Hill Wallpole bounds

Thermal conductivity

Elastic constant matrix (GPa):

	1	2
1	1.4464	0.9012
2	0.9012	1.7473
3	0.7857	0.9324
4	-0.0129	-0.0615
5	0.0818	0.0515
6	0.0050	

Elastic compliance:

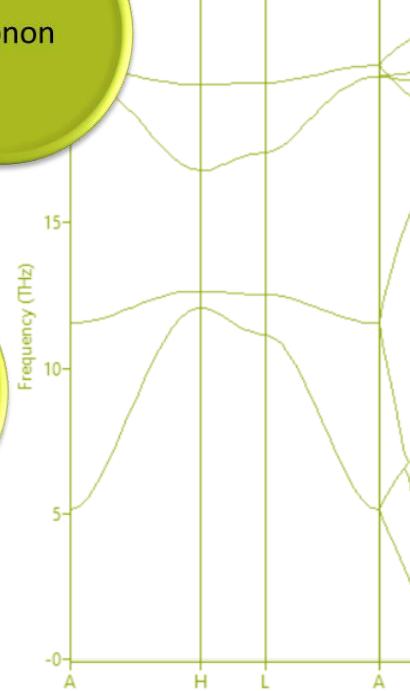
	1
1	1113.098
2	-419.5328
3	-286.3090
4	-42.6500
5	-91.4295
6	-10.2147

Direct Integral

lambda x 0.01712 +/- 0.000
lambda y 0.006323 +/- 4.3e-05
lambda z 0.002736 +/- 3.3e-05
lambda average 0.00772 +/- 0.0002

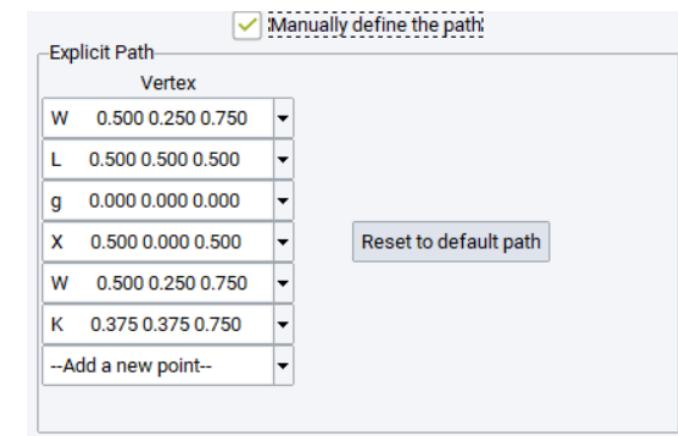
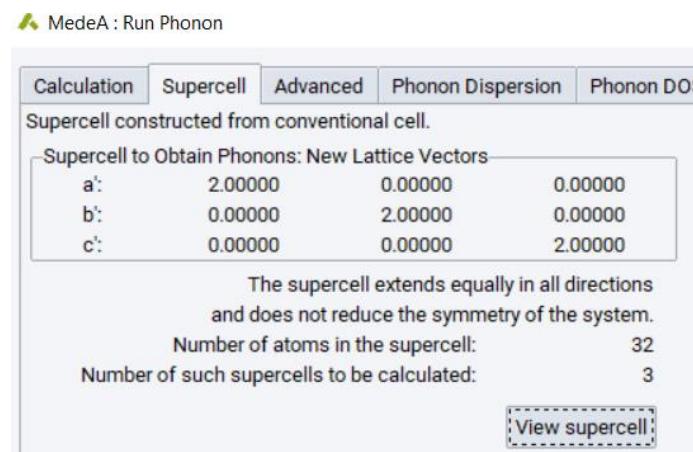
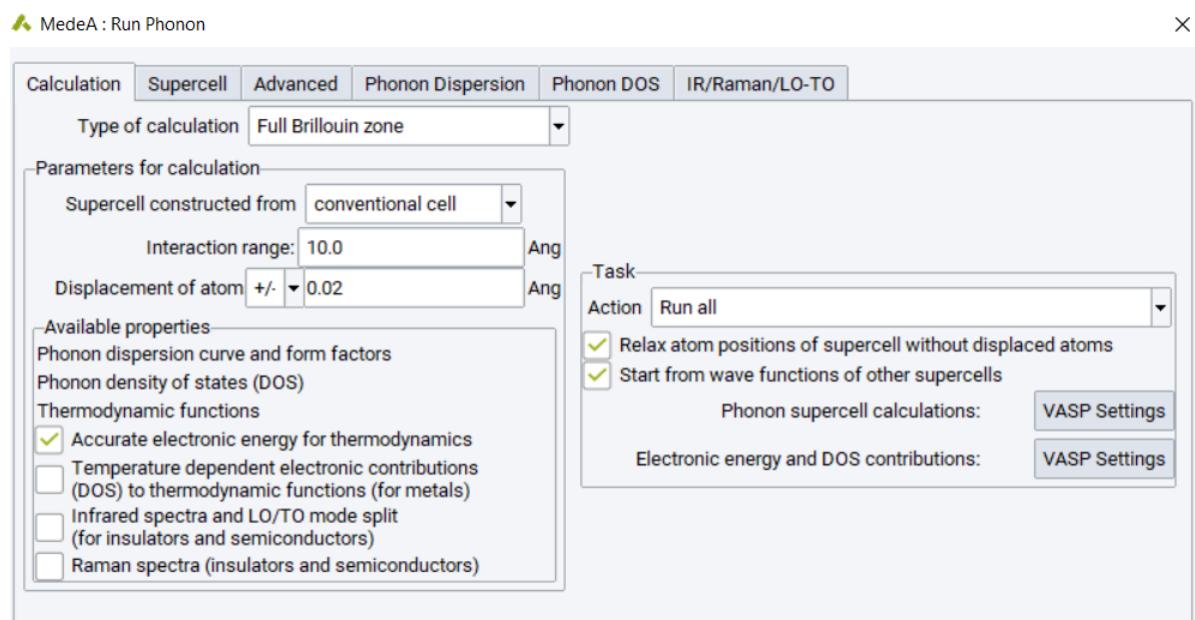
Property Direct Integral Fit RMS

Property	Direct Integral	Fit	RMS
η_x	0.010428 +/- 9.1e-05	0.010714	0.000132
η_y	0.004432 +/- 9.1e-05	0.002375	4.2e-05


Automated convergence

MedeA®
VASP

Phonon




TSS

Electronics

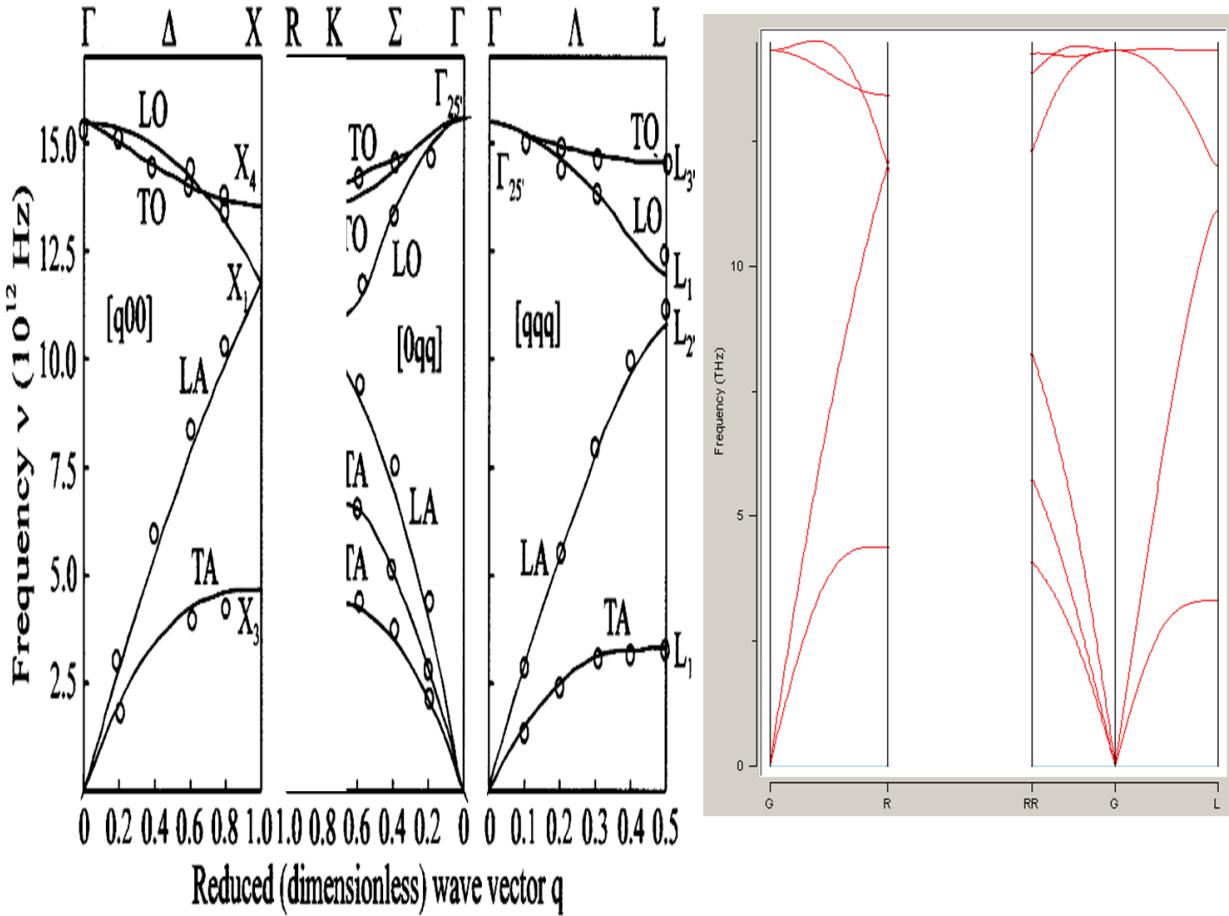
Phonon Module

- MedeA Phonon is based on the PHONON program authored by Prof. Krzysztof Parlinski^{2,3}
- Automatic detection and use of the space-group symmetry of the phase
- Fully automatic determination of supercell and the necessary atomic displacements
- Fully automated setup, execution, and processing of VASP jobs
- Uses forces computed with VASP, MOPAC, and LAMMPS.
- The use of Phonons with VASP includes the ability to utilize GGA+U, meta-GGA, van der Waals, hybrid functionals, spin-polarization, and fully relativistic Hamiltonians
- Partial freezing of atoms possible.
- Applicable to transition state geometries
- Restart capabilities in case of hardware or communication failures.

Phonon module

Available Results

- PhononDensityOfStates
- PhononDispersion
- ThermodynamicFunctions


Available Output Files

File	Size	Download
Job.out	23.2 kB	as plain text
OSZICAR.out	1.1 kB	as plain text
OUTCAR.out	84.3 kB	as plain text
VASP.out	1.6 kB	as plain text
displaced Mg a OSZICAR.out	1.1 kB	as plain text
displaced Mg a OUTCAR.out	111.6 kB	as plain text
displaced Mg a VASP.out	1.9 kB	as plain text
displaced Mg b OSZICAR.out	1.1 kB	as plain text
displaced Mg b OUTCAR.out	113.5 kB	as plain text
displaced Mg b VASP.out	2.0 kB	as plain text
displaced O a OSZICAR.out	1.3 kB	as plain text
displaced O a OUTCAR.out	117.3 kB	as plain text
displaced O a VASP.out	2.2 kB	as plain text
displaced O b OSZICAR.out	1.3 kB	as plain text
displaced O b OUTCAR.out	117.3 kB	as plain text
displaced O b VASP.out	2.2 kB	as plain text
undisplaced OSZICAR.out	1.4 kB	as plain text
undisplaced OUTCAR.out	110.0 kB	as plain text
undisplaced VASP.out	2.2 kB	as plain text

phonon0.HFF	20.1 kB	as plain text
phonon0.cpu	276 B	as plain text
phonon0.d00	567 B	as plain text
phonon0.d01	1.2 kB	as plain text
phonon0.d02	400 B	as plain text
phonon0.d03	1.1 kB	as plain text
phonon0.d05	736 B	as plain text
phonon0.d07	63.2 kB	as plain text
phonon0.d08	231.5 kB	as plain text
phonon0.d10	434 B	as plain text
phonon0.d11	434 B	as plain text
phonon0.d12	100 B	as plain text
phonon0.d13	506 B	as plain text
phonon0.d14	6.9 kB	as plain text
phonon0.d16	12.7 kB	as plain text
phonon0.d17	236 B	as plain text
phonon0.d18	41.9 kB	as plain text
phonon0.d19	29.1 kB	as plain text
phonon0.d20	3.0 kB	as plain text
phonon0.d21	3.1 kB	as plain text
phonon0.d22	4.7 kB	as plain text
phonon0.d23	4.7 kB	as plain text
phonon0.d34	47.7 kB	as plain text
phonon0.d44	331 B	as plain text
phonon0.d73	15.5 kB	as plain text
phonon0.d92	400 B	as plain text

*.d22	atomic positions used by viewer to show supercell (format as VASP POSCAR).
*.d23	POSCAR file containing positions of particles in the supercell. It can be used directly by the VASP software . POSCAR is generated if VASP POSCAR is selected at Supercell for Atoms .
*.d24	content of Comments Editor .
*.d25	data of cummulant total and partial phonon density of states selected by Plot Partial DOS .
*.d26	file Plot Internal Energy as a function of temperature.
*.d27	file Plot Free Energy as a function of temperature.
*.d28	file Plot Entropy as a function of temperature.
*.d29	file Plot Heat Capacity as a function of temperature.
*.d30	file Plot Thermal Displacements $\langle U^2 \rangle$ as a function of temperature. One column format.
*.d32	thermal displacements $\langle U^2 \rangle$: XX, XY,XZ,YX,YY,YZ,ZX,ZY,ZZ as a function of temperature. Six columns format. Input.
*.d33	thermal displacements $\langle U^2 \rangle$: XX,YY,ZZ,YZ,ZX,XY as a function of temperature. One column format. Output.
*.d34	diagonal and off-diagonal density of states for neutron and x-rays scattering.
*.d37	data for incoherent inelastic neutron scattering on monocrystal.
*.d38	incoherent inelastic neutron scattering on monocrystal. Total and cummulant contributions.
*.d39	x-ray nuclear inelastic scattering on monocrystals. Total and cummulant contributions.
*.d40	incoherent inelastic neutron scattering on polycrystal. Total and cummulant contributions.
*.d44	DISCAR file which contains required displacements to calculate Hellmann-Feynman forces. It can be used to generate sequence of POSCAR's files for VASP.

Phonon module

The following thermodynamic functions are obtained from the phonon density of states within the harmonic approximation. The results are meaningful only below the melting point, which lies well below 3000 K for most materials.

Definitions:

C_v : vibrational heat capacity at constant volume
 $E_{vib}(T) = E(T) - E(0)$: the change in vibrational internal energy from 0 K, where
 $E(0) = E_{elec} + ZPE$ is the electronic energy of formation E_{elec} plus the zero point energy ZPE
 $S(T)$: the vibrational entropy at temperature T
 $-(A(T) - E(0))$: the change in the vibrational Helmholtz free energy from 0 K
 $E(T)$: the electronic energy of formation plus the vibrational internal energy, so this term is
 $E_{elec} + ZPE + E_{vib}(T)$
 $A(T)$: the electronic plus vibrational Helmholtz free energy,
 $E(T) - T.S(T)$

Note that the electronic energy, which is part of the enthalpy and free energies, is set to zero because the reference energies of the elements in their standard state are unavailable.

Electronic energy = 0.00 kJ/mol (set to zero since reference energies are unavailable)

PV term = 0.35 kJ/mol

Zero-point energy = 13.52 kJ/mol

T K	C_v J/K/mol	$E(T) - E(0)$ kJ/mol	$S(T)$ J/K/mol	$-(A(T) - E(0))$ kJ/mol	$E(T)$ kJ/mol	$A(T)$ kJ/mol
0	0.0000	0.0000	0.0000	-0.0000	13.5163	13.5163
1	0.0000	0.0000	0.0000	-0.0000	13.5163	13.5163
2	0.0000	0.0000	0.0000	-0.0000	13.5163	13.5163
3	0.0000	0.0000	0.0000	-0.0000	13.5163	13.5163
4	0.0002	0.0000	0.0000	-0.0000	13.5163	13.5163
5	0.0006	0.0000	0.0001	-0.0000	13.5163	13.5163
10	0.0097	0.0000	0.0026	-0.0000	13.5163	13.5163
15	0.0320	0.0001	0.0103	0.0000	13.5164	13.5163
20	0.0716	0.0004	0.0245	0.0001	13.5167	13.5162
30	0.2312	0.0018	0.0791	0.0006	13.5181	13.5157
40	0.5855	0.0056	0.1880	0.0019	13.5220	13.5144
50	1.2480	0.0145	0.3834	0.0047	13.5308	13.5117
60	2.2771	0.0318	0.6962	0.0099	13.5481	13.5064
70	3.6651	0.0613	1.1471	0.0190	13.5776	13.4973
80	5.3605	0.1062	1.7441	0.0334	13.6225	13.4829
90	7.2889	0.1692	2.4850	0.0544	13.6856	13.4619
100	9.3709	0.2524	3.3597	0.0835	13.7688	13.4328
125	14.7935	0.5544	6.0326	0.1996	14.0707	13.3167
150	19.9395	0.9897	9.1925	0.3892	14.5060	13.1271
175	24.4535	1.5461	12.6142	0.6614	15.0624	12.8549
200	28.2614	2.2064	16.1358	1.0207	15.7227	12.4956
225	31.4170	2.9527	19.6507	1.4697	16.4700	12.0481


Electronics module

- Boltzmann theory: semiclassical theory
 - electrons follow classical equations of motion
 - electron velocity/effective mass from first principles
 - results depend on relaxation time
- calculated properties
 - electrical conductivity
 - thermopower (Seebeck coefficient)
 - thermal conductivity (electronic part)
 - electronic specific heat
 - Pauli paramagnetic susceptibility
 - Hall conductivity
- ▶ results vs. temperature or doping

Electronics Module

- Three-dimensional isosurfaces of electronic energies (Fermi surfaces) in k-space
- Interactive analysis of effective masses for each band at any point in k-space
- Interpolated electronic band structure displayed for orientation
- Highly accurate effective mass tensors for selected electron or hole bands at requested points in k-space
- Electrical conductivity, thermal conductivity
- Thermoelectric power (Seebeck coefficient)
- Electronic specific heat
- Pauli paramagnetic susceptibility
- Hall coefficient

Examples

DOI: [10.1039/C8MH01069B](https://doi.org/10.1039/C8MH01069B) (Communication) *Mater. Horiz.*, 2019, **6**, 182-191

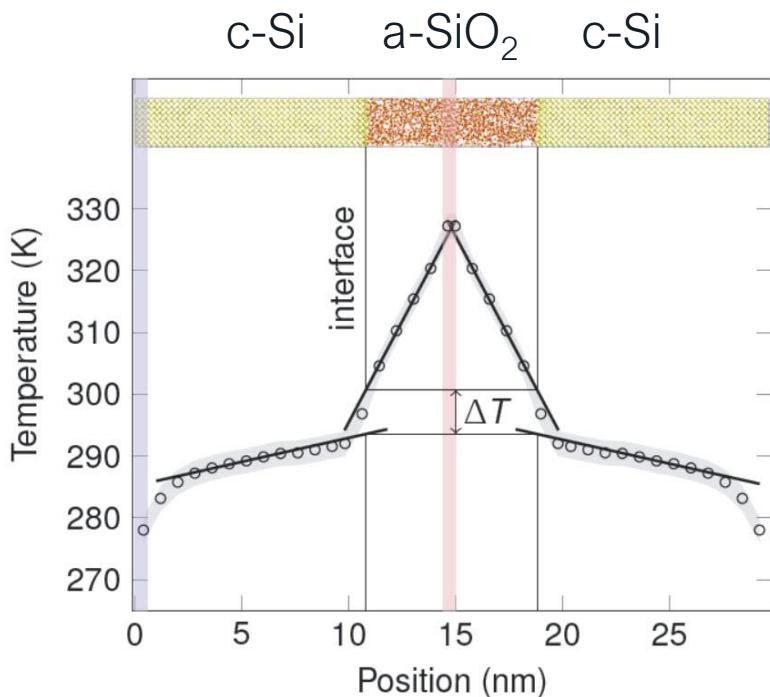
Direct probe of the nuclear modes limiting charge mobility in molecular semiconductors[†]

Thomas F. Harrelson ^a, Varuni Dantanarayana ^b, Xiaoyu Xie ^c, Correy Koshnick ^d, Dingqi Nai ^a,
Ryan Fair ^e, Sean A. Nuñez ^f, Alan K. Thomas ^g, Tucker L. Murrey ^d, Michael A. Hickner ^f, John K.
Grey ^g, John E. Anthony ^h, Enrique D. Gomez ^e, Alessandro Troisi ^c, Roland Faller ^a
and Adam J. Moulé ^{*ab}

Applied Surface Science
Volume 521, 15 August 2020, 146256

Full Length Article

Enhancing thermoelectric properties of monolayer GeSe via strain-engineering: A first principles study


Yu Li ^a , Kuan Ma ^a, Xing Fan ^{a, b}, Fusheng Liu ^a, Junqin Li ^a , Heping Xie ^a

Thermal Conductivity

Reverse non-equilibrium molecular dynamics

Sharp interface between crystalline Si and amorphous SiO_2

A. France-Lanord, P. Soukiassian, C. Glattli, and E. Wimmer,
J. Chem. Phys. **144**, 104705 (2016)

Green-Kubo Approach

To examine isotope effects, 300K thermal conductivities for isotopically pure and 'natural' isotopic mixtures of pure Si and Ge were calculated (units: $\text{Wm}^{-1}\text{K}^{-1}$)

	Isotopically Pure	Isotopic Mixture	Expt(*)
Si	272	128	130
Ge	98	37	58

* <http://www.ioffe.rssi.ru/SVA/NSM/Semicond/SiGe/thermal.htm>

Example

THE JOURNAL OF CHEMICAL PHYSICS **144**, 104705 (2016)

***Ab initio* parameterization of a charge optimized many-body forcefield for Si–SiO₂: Validation and thermal transport in nanostructures**

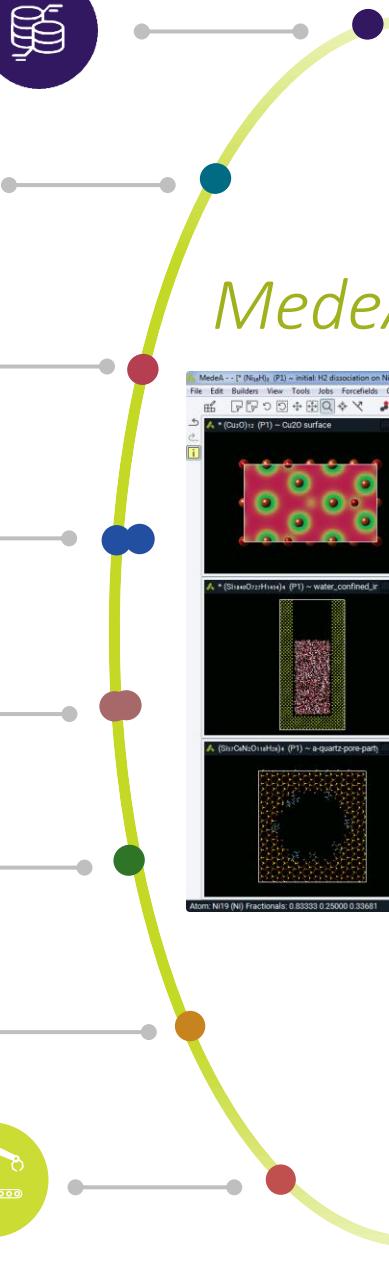
Arthur France-Lanord,^{1,2,a)} Patrick Soukiassian,² Christian Glattli,² and Erich Wimmer¹

¹*Materials Design SARL, 92120 Montrouge, France*

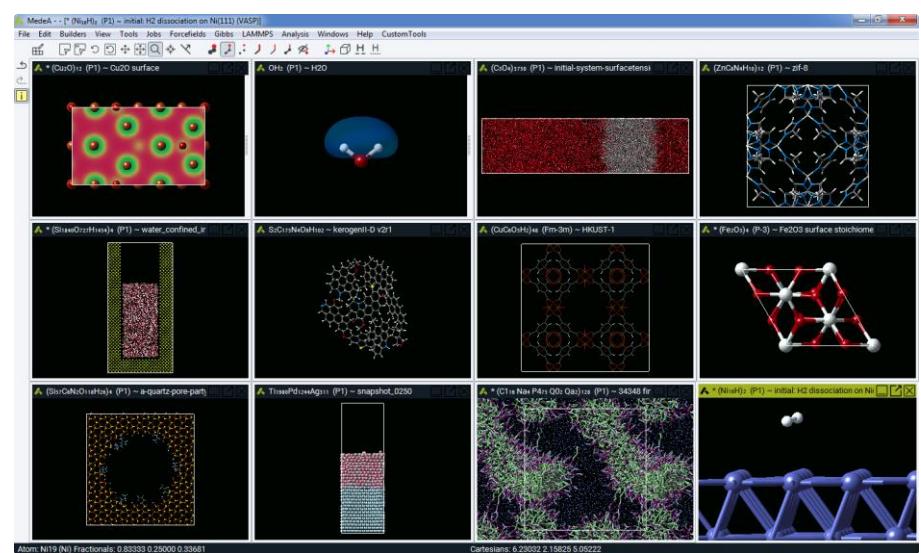
²*SPEC, CEA, CNRS, Université Paris-Saclay, CEA Saclay, 91191 Gif-sur-Yvette, France*

JOURNAL OF APPLIED PHYSICS **117**, 214303 (2015)

Thermal conductivity of nanostructured Si_xGe_{1-x} in amorphous limit by molecular dynamics simulation


Payam Norouzzadeh,^{1,2} Amin Nozariabmarz,¹ Jerzy S. Krasinski,² and Daryoosh Vashaee^{1,a)}

¹*Monteith Research Center, Electrical and Computer Engineering Department, North Carolina State University, Raleigh, North Carolina 27606, USA*


²*School of Electrical and Computer Engineering, Helmerich Advanced Technology Research Center, Oklahoma State University, Tulsa, Oklahoma 74106, USA*

Databases

Direct access to experimental and calculated structure data gathered over decades – more than 1,1 million structures

MedeA environment

Builders

Rich set of builders for crystalline/amorphous/ordered systems, molecules, surfaces, interfaces, nanoparticles, polymers, fluids, solids, hybrid materials, composites...

Compute Engines

VASP, GAUSSIAN, MOPAC, LAMMPS, GIBBS

Forcefields + Forcefield Optimizer

Access to state-of-the-art Forcefields (non-reactive & reactive); open access to all FF parameters; addition of user-defined FFs; FF optimization Machine Learning Potential Generator

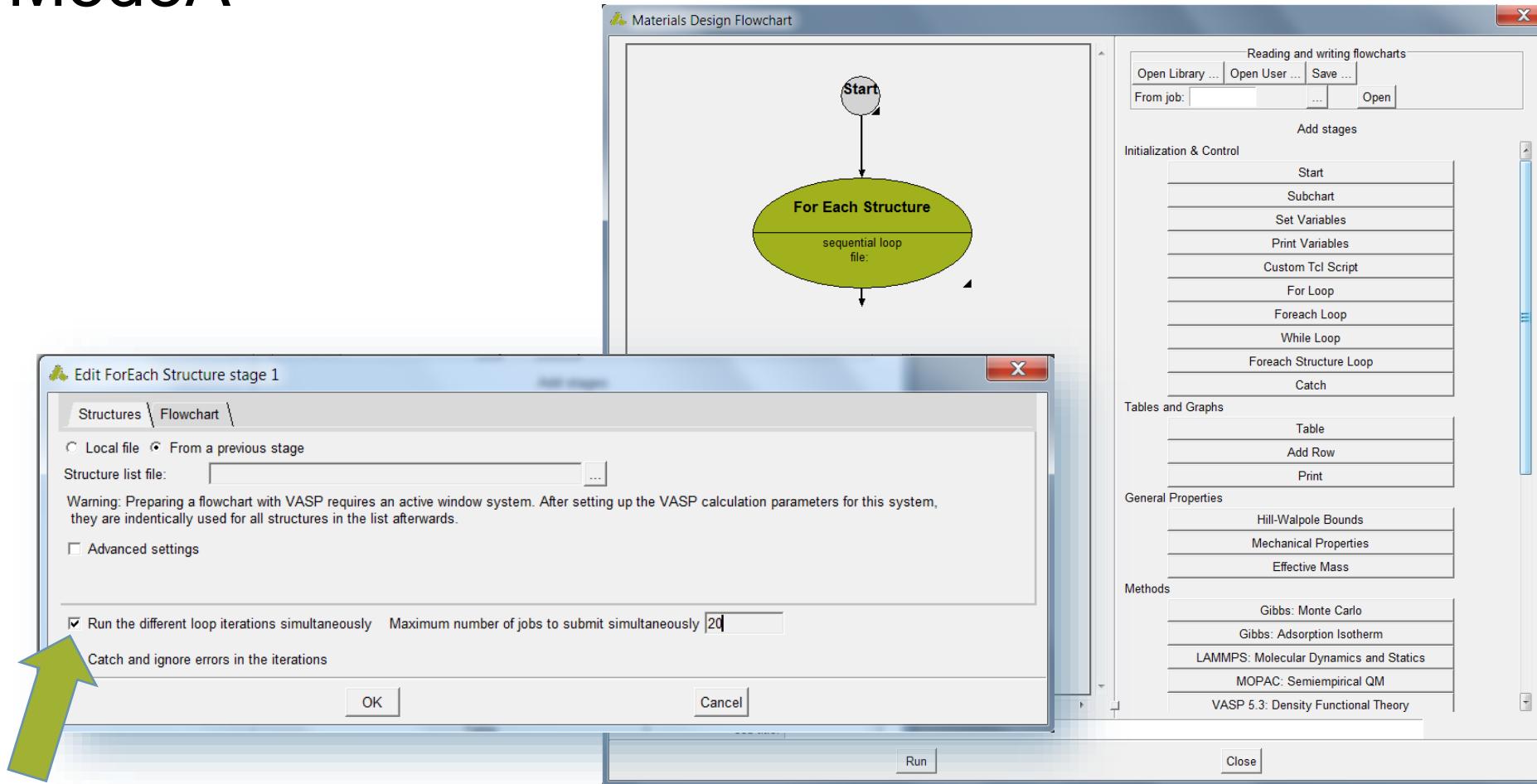
Property Modules

Graphical workflows & pre-configured computational protocols, to facilitate modeling, analysis, and property prediction

High Throughput

Generation of large and consistent sets of computed data & descriptors

Analysis Tools


Analysis and post-processing tools, for system characterization, visualization and analysis of calculated properties

JobServer & TaskServer

Automated processing of compute protocols & workflows; Reliable long-term archiving & accounting of computed data

HT in MedeA

- Value: Highly efficient screening of large number of compounds

Databases

Direct access to experimental and calculated structure data gathered over decades – more than 1,1 million structures

Builders

Rich set of builders for crystalline/amorphous/ordered systems, molecules, surfaces, interfaces, nanoparticles, polymers, fluids, solids, hybrid materials, composites...

Compute Engines

VASP, GAUSSIAN, MOPAC, LAMMPS, GIBBS

Forcefields + Forcefield Optimizer

Access to state-of-the-art Forcefields (non-reactive & reactive); open access to all FF parameters; addition of user-defined FFs; FF optimization Machine Learning Potential Generator

Property Modules

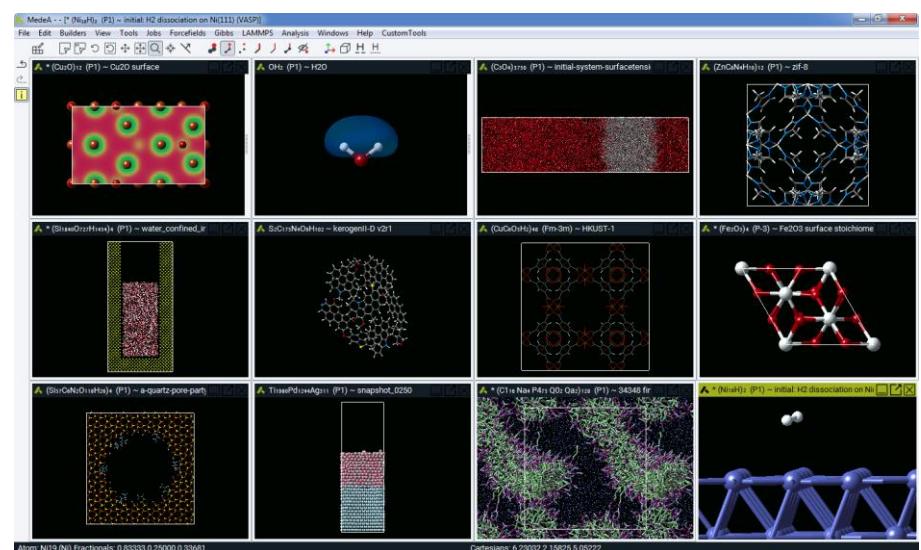
Graphical workflows & pre-configured computational protocols, to facilitate modeling, analysis, and property prediction

High Throughput

Generation of large and consistent sets of computed data & descriptors

Analysis Tools

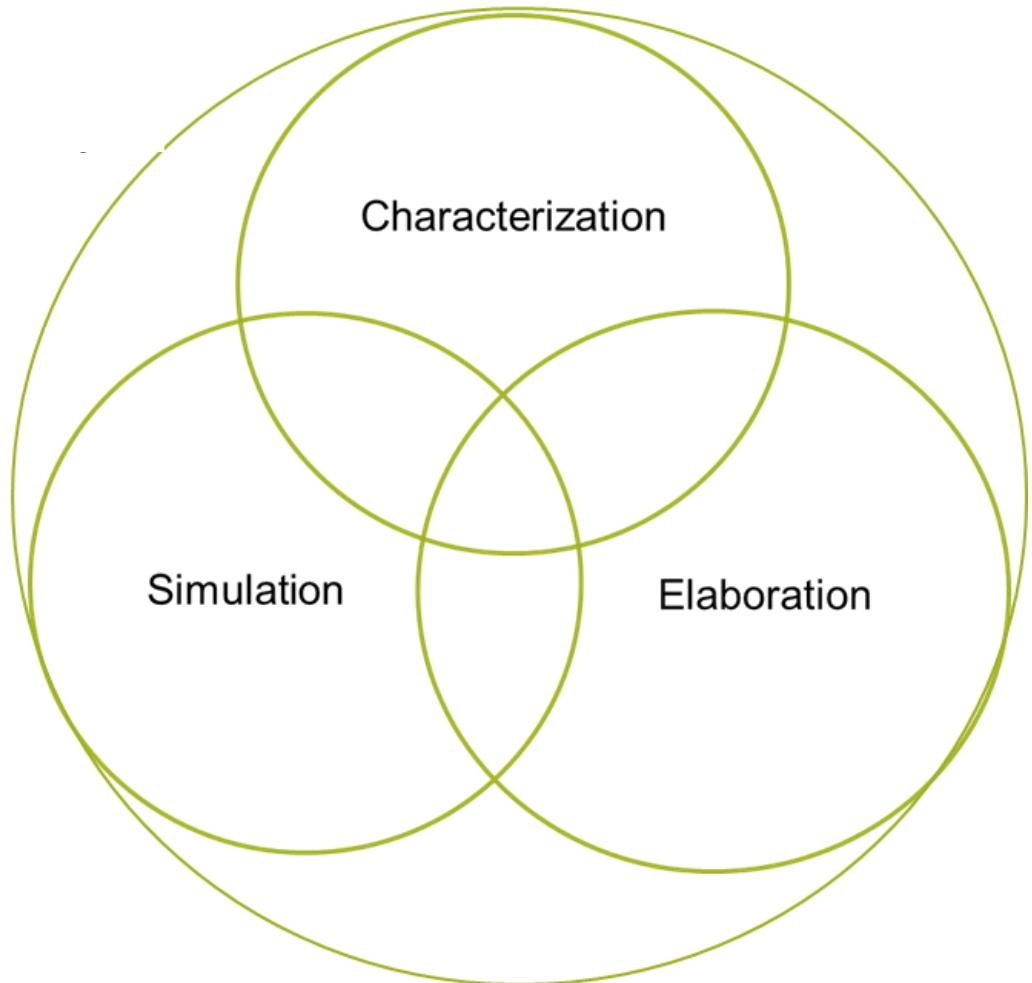
Analysis and post-processing tools, for system characterization, visualization and analysis of calculated properties



JobServer & TaskServer

Automated processing of compute protocols & workflows; Reliable long-term archiving & accounting of computed data

MedeA environment


MedeA's 3-Tier Architecture

- MedeA's **three-tier architecture** lets you submit compute jobs to local or remote compute resources.
- Parallel task processing and MedeA's high-throughput job control guarantee optimal performance on workstations and HPC platforms under Windows and Linux alike.
- Submit your workflow, turn off your workstation or laptop and take a break! – Or join a meeting!
- MedeA's tier architecture takes care of the entire workflow, in serial mode, or parallel, or running through structure list with hundreds of entries in high-throughput mode.
- Workflows may include multiple stages involving several solvers, intermediate analysis and building, and even on-the-fly graphical analysis. - Though you still need to write the report or paper yourself. ☺

The JobServer interprets the flowchart...
...and automates the process.

Conclusion

MedeA helps focus on key objectives such as materials screening, design of experiment and scientific analysis, rather than dealing with shell programming, file formats, command lines and syntax issues.

Over 500 customers in Industry, Universities, and Government Laboratories

"Computational material science tools have revolutionized the evaluation of neutron thermal scattering laws. All of the new thermal scattering laws including in the new US national ENDF/B-VIII.0 nuclear data library were developed using DFT or MD simulations. The vast majority were developed by MedeA users using VASP, PHONON, and LAMMPS."

-Michael L. Zerkle, Ph.D.
Senior Advisor, Reactor Physics Methods Development,
Naval Nuclear Laboratory

Materials Design: Technical Teams

Development Team

Clive Freeman
President & CEO

Benoit LeBlanc
Software Architect

Dave Rigby
Senior Scientist

Marianna Yiannourakou
Research Scientist

Walter Wolf
Senior Scientist

Jason Aubry
Development Engineer

Jörg-Rüdiger Hill
Senior Software
Engineer in Contract
Research &
Development

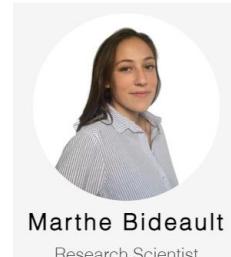
Research Team

Erich Wimmer
Chief Scientific Officer
& Chairman of the
Board

Mikael Christensen
Research Scientist

Volker Eyert
Senior Scientist

Leonid Kahle
Contract Researcher


Xavier Rozanska
Research Scientist

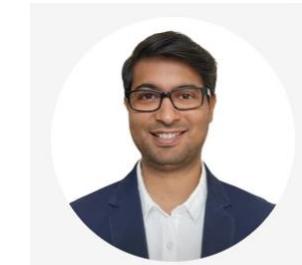
Benoit Minisini
Pre-Sales Application
Scientist

Boris Belin
Research Scientist in
Contract Research &
Development

Marthe Bideault
Research Scientist
Intern

Support Team

Ray Shan
Director of Support


Rene Windiks
Senior Scientist, Battery
Specialist

David Reith
Application & Research
Scientist

Thomas Nilson
Technical Support
Engineer

Shubham Pandey
Support & Application
Scientist