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Role of structural disorder on the mechanical properties of amorphous materials? 
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Examples of Amorphous Materials:

Tmelting   
Glass Transition:

structural

relaxation
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Metallic glasses, Vitreloy a-Si

Silicate glasses

Pair correlation function

Foams



Processing Amorphous Materials:

Tmelting
Glass Transition:

structural

relaxation
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Amorphous Metals

Very hard materials

Hard

Fragile ?
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Ductile at small scale

Micropillar in pure silica glass



What happens inside a disordered material ?
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Heterogeneous response & Localization



Heterogeneities and force chains allow supporting strong loads
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Example of amorphous polymer



Local rearrangements may organize progressively along shear bands
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This behaviour is composition and loading dependent

Shear flow Densification
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indentation scratch

V. Keryvin et al. (2008)Bulk Metallic Glass

Quasi-static

indentation 

(0.2 mm/mn, 69N)

Impact velocity

(410 mm/s, 562N)
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0.001s-1

1s-1

1 s-1

0.001 s-1

This behaviour is composition and loading dependent

T=25°C T=300°C T=600°C

1 s-1

0.001 s-1

15% Strain

40% Strain

10% Strain

25% Strain

0.001s-1

ρ > 2.35 

g/cm3

1 µm

14% Strain

Pristine



A. Tanguy (2021)



➢ What are the microscopic sources of mechanical deformation ?

➢ Is it possible to define Phonons ?

➢ Is it possible to quantify Thermal transport ?

In Amorphous Materials
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Atomistic Modeling of a 2D Lennard-Jones Glass

1. Elasticity of Heterogeneous Materials

Force chains

Heterogeneous deformations

Rotational Motion

Response to a Point source force

(inverse Green Function)



Non-affine displacement field

J.R. Williams et at. (1997)

G. Debrégeas et al. (2001)

A. Tanguy et al. (2002)

B. Doliwa et al. (2003)

E. Kolb et al. (2003)

A. Lemaître et al. (2004)

E.R. Weeks et al. (2006)

. non affineu r u −= +

non affineu −



Characteristic lengths in amorphous solids:

P.Y. Huang et al. Science (2013)A. Tanguy et al. (2002)

M. Tsamados et al. (2009)

Heterogeneous displacements



Low Effective Elastic Modulus (Reuss, 1929)

when large dispersion of local elasticity

Voigt calculation (1889):

Quenching rate

 :::: CCeff 

 =)(rwith equality only if  



Local Elastic Moduli

Linear Hooke’s Law

21 unknown parameters

Best reliability

between local stresses and local strains.

Local optimization with 6 different deformations

Linear Elasticity

a

Isotropic

Elasticity

Coarse

Graining

Length w

M. Tsamados et al. (2009)



Elastic Moduli in a sodo-silicate glass (1-x)SiO2 + xNa2O:

density Si

density Na+

Shear modulus

Bulk modulus

High loca Na+ density↔ Low Elastic Modulus G. Molnar et al. (2016)



density at start

loosened density

(initial cracks) Na density 
distribution at start

G. Molnar et al. (2016)

Crack Initiation in a 

sodo-silicate glass 

(1-x)SiO2 + xNa2O:



5% Na2O 30% Na2O

Effect of composition:   density profile at max. tractions

G. Molnar et al. (2016)

Crack Initiation in a 

sodo-silicate glass 

(1-x)SiO2 + xNa2O:



2. Irreversible Plastic deformation

Plastic Deformation

Non-affine reversible

displacements (x103)

Elementary

Shear band (x0.4)

Local shear irreversible

(x40) quadrupolar event



Reminder: Hill’s Criterion for Crystals Stability ( 1962 ) : Continuous Media

Helmholtz Free Energy

Stability Criterion ≥ 0min
𝑤,𝑘

𝐶𝑖𝑗𝑘𝑙𝑤𝑖𝑤𝑘𝑘𝑗𝑘𝑙 𝜂𝑖𝑗 ∾ 𝑤𝑖𝑘𝑗

Burgers Vector

Slip Plane

g → gc

Energy Barriers

A. Lemaitre  and C. Maloney (2004) 

T. Albaret and D. Rodney (2018)

In Amorphous materials: Atomistic description

𝑚𝑖

𝜕2𝑢𝛼
𝜕𝑡2

𝑟𝑖 , 𝑡 = −෍

𝑗,𝛽

𝑀𝑖𝑗
𝛼𝛽
. 𝑢𝛽 𝑟𝑗 , 𝑡

𝑀𝑖𝑗
𝛼𝛽

= −
𝜕2𝐸𝑡𝑜𝑡𝑎𝑙
𝜕𝑟𝑖𝛼𝜕𝑟𝑗𝛽

with including external forces

𝑉 𝑟𝑖 𝑒
𝑖𝜔𝑡 = 𝑚𝑖 𝑢 𝑟𝑖 , 𝑡 , 𝐷𝑖𝑗

𝛼𝛽
=

𝑀𝑖𝑗
𝛼𝛽

𝑚𝑖𝑚𝑗

𝜔2𝑉 = ന𝐷. 𝑉 w → 0 Instability



shear stress

displacements

Local Irreversible Plastic deformation



Glasses vs. Crystals

Very high 

mechnical

hardness

M.F. Ashby (2006)

ധ𝝐∗

Eshelby (1957)

Lemaitre (2004)

Albaret (2016)

crystal

glass

Dislocations

Local Eshelby inclusions



shear stress measured

displacements
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Eshelby-like Inclusion

Local Irreversible Plastic deformation
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a-Si

total

shear stress

T. Albaret et al. (2016)

C *,C

,

Eshelby-like Inclusion

Local Irreversible Plastic deformation

shear strain
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« Linear Elasticity »
Plastic Plateau

%Na2O

P

G. Molnar et al. (2016)

Sensitivity to Composition and Pressure

The example of sodo-silicate glass



x

Number

of events
Amplitude

Size

Na-rich plastic events (different stages)

Composition controls the number of events

Pressure sensitivity of their size, and amplitude

G. Molnar et al. (2017)

Composition

Sensitivity to Composition and Pressure



Sensitivity to Composition and Pressure

5% Na20 15% Na20
30% Na20

Densification Shear as % Na20

yield surfaces 

at

constant

density

G. Molnar et al. (2017)

Adapt the 

parameters of 

the yield

surfaces to 

experimental

results G. Kermouche. 

(2022)

Experiments



Sensitivity to Strain rate
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Flow Stress in a Lennard-Jones Glass:

F. Varnik et al. (2006)

~ Herschel-Bulkley

Rheological Properties:

n

F C g .0 +=

n<1 shear thinning

n>1 shear thickenning

Sensitivity to Strain rate

T



Sensitivity to Disorder

(i) > d
thresh(i) : plastic event

then : (i)= (i)+d

with stress redistribution
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Random threshold:

d
thresh(i) = 0

thresh + Q.ran(i)

with initial surface defects

Example of shear banding

in a contact problem



Inhomogeneous reversible elastic behaviour Lower effective sound velocity

Localized plasticity Low dissipation, sensitivity to local structure

Conclusion Mechanical Deformation



➢ What are the microscopic sources of mechanical deformation ?

➢ Is it possible to define Phonons ?

➢ Is it possible to quantify Thermal transport ?

In Amorphous Materials



Cas d’un milieu continu, linéaire, homogène et isotrope:



m


2
,. 22

.. +
== LL cc     

2 2 22
. . .lmn L Lc k c n m l

L


w = = + +

Longitudinal modes:

LTT ccc ==


m
    ,. 22

..
Transverse modes:

2 modules d’élasticité,  et m

( )

0

2

2

stresses     . . 2 .

equation of motion (momentum conservation):

2 . . . .

( ) ( )

ext

tr

u
grad divu rot rotu f

t

u grad rot

        m 

  m m

 

= + +


= + − +



= +

3

2

3~)(
D

g
w

w
wVibrational Density of States:

Wave vector

2 2 22
.k n m l

L


= + +

k

Phonons = (quantum) vibrations in crystals
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1. Vibrations in the Harmonic approximation of Energy

What are the Eigenmodes in Amorphous Materials?

Vibrational Eigenmodes in Amorphous Materials: the example of Amorphous Silicon

Conversion to thermal energy and viscous dynamics

Most unstable mode

Scattering of Plane Waves
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Plane Waves Soft Modes Diffusons Locons

P.B. Allen and 

J.L. Feldman (1999)N. Shcheblanov et al. (2015)

What are the Eigenmodes in Amorphous Materials?

Vibrational Eigenmodes in Amorphous Materials: the example of Silica glass SiO2



O. Dauchot et al. (2010)

What are the Eigenmodes in Amorphous Materials?

Vibrational Eigenmodes in Amorphous Materials: the example of Soft colloidal gel



a-Si

A. France-Lanord et al. (2014)

Glasses vs. Crystals

Vibrational Density of States



Glasses vs. Crystals

SiO2

L. Lichtenstein et al. (2014) - STM

Boson Peak

A.I. Chumakov et al. (2014)

Vibrational

energy

Si O

Vibrational Density of States



O. Dauchot et al (2010)

M. Wyart et al (2005)

Packing fraction

Glasses vs. Crystals

Soft colloidal gels / granular media, above the jamming transition

Vibrational Density of States

participation 

ratio



Glasses vs. Crystals

P.Y. Huang et al. Science (2013)

Inhomogeneous strain

Lower effective

sound velocity

Heterogeneous Elasticity

A. Tanguy et al. (2002)

W. Schirmacher et al. (1998)

A. Reuss (1929)

Vibrational Density of States



Dynamical Structure Factor in a-Si:

( , ) ( , ). ( ,0)i t

LS q e q t q dtww  −= −

Sound velocities

Y. Beltukov et al. (2016)

Damped Harmonic Osc fit:

dq

d
v

TL

g

,w
=



( , ) ( , ). ( ,0)i t

LS q e q t q dtww  −= − Y. Beltukov et al. (2016)

Damped Harmonic Osc fit:

Scattering of Transverse

and then Longitudinal waves

Ioffe-Regel 

criterion

Mean-free

Path 

Weak scattering Strong scattering

/X gv= 

/ 2X =



Dynamical Structure Factor in a-Si:



Internal Friction tan 𝛿 =
𝐺′′

𝐺′
∝

Dissipated Energy

Stored Energy
=

1

𝜔

0׬
𝑇
𝑃 𝑡 ሶ𝜀 𝑡 𝑑𝑡

0׬
𝑇
𝑃 𝑡 𝜀 𝑡 𝑑𝑡

T. Damart et al. (2017)

Dissipation

)sin(0 tw =

)sin(0 w += t

0

0

'( ). .sin( )

     ''( ). .cos( )

G t

G t

 w  w

w  w

=

+

Elastic Modulus

Loss Modulus

SiO2

Phase-shifted response of a glass to an oscillatory load



Pressure

induced by 

the eigenmode

Projection on the Eigenmodes:

Cm
2

Thermal Force

+ related local damping



Pressure Cm induced by each eigenmode, for an applied isotropic compression:

Asymetry factor or Non-affine force:

Cm
2



Asymetry factor or Non-affine force

for an applied shear strain:
Generalized stress

induced by each eigenmode:
mC

Cm
2

VDOS

Applied

Shear strain



non-affine displacement

Pressure induced by the eigenmode m

Internal Friction

Projection of the displacement on the eigenmode m

''( )
tan

'( )

G

G

w


w
= =

with



S(q,w)

Attenuation

/w

Internal

Friction

ta
n
𝛿

(DSF)

In the harmonic approximation, 

the internal friction is due to the 

sensitivity of the stress on 

the local shape of the eigenmodes

In glasses, the non trivial shape of the 

eigenmodes explains its

non-monotonous frequency

dependence

Comparable to the apparent Mean-free 

path below the Ioffe-Regel frequency

''( )
tan

'( )

G

G

w


w
= =

T. Damart et al. (2017)



F. Lund et al. (2012)

T. Damart et al. (2015)

Apparent Acoustic Attenuation in Glasses

crystal

glass



Y. Beltukov et al. (2018)

Wave-Packets Dynamics in a-Si:

Mixed Regime

(Boson Peak)

Diffusive Regime

Diffusons

w > wIR

Localisation

Locons

Ballistic Regime

Propagons

w  wIR

w

Random orientations



propagation

diffusion

localization

mixed

Y. Beltukov et al. (2018)

W
a
v
e

P
a
c
k
e
t

e
x
c
it
a
ti
o
n

Wave packets are 

supported by a 

combination of 

Normal Modes



After-shocks in the Mixed Regime

Ballistic

Diffusive
x

Y. Beltukov et al. (2018)



Y. Beltukov et al. (2018)

Enveloppe of Energy

Ballistic Regime:

Beer-Lambert Attenuation

Diffusive Regime:

Power-law Attenuation

max at



=21

n=4THz

Diffusive propagation of energy

Allen and Feldman (1999)
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Diffusive transport due to the 

departure from plane waves



Attenuation Length

Comparison of Wave Packet propagation, to the Dynamical Structure Factor

Attenuation length (WP)

Pdiff-prop(l)=Pdiff-prop(0) /e

Mean-free path (WP)

(Beer-Lambert)

Mean-free path (DSF)  

lX = cL,T / 

Apparent attenuation (MFP)

of the Wave Packets due to 

scattering in the Ballistic regime

Transportation of 

Energy even beyond

the Ioffe-Regel frequency

(Diffusive regime) Y
. 
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e
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u
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A single localized mode Superposition of localized modes, 

on percolating soft zones 

Vibration modes: Vibration modes:

A. Lemaitre (2004)

A. Tanguy et al. (2010)

Eshelby Inclusion: Elementary Shear Band:

Shear Moduli Shear ModuliDisplacements Displacements

2. Vibrations and anhamonicity



P ≈ 0 GPa

Effect of Plasticity on vibrations through Raman Scattering in sheared SiO2 glass:

B. Mantisi et al. (2012)

N. Shcheblanov et al. (2015)

SiO2

rocking

bending

streching

In the plastic plateau



Structural changes

Rings Si 

Coord
4

5

3

Very small variation

Structural changes in plastified a-SiO2



Semi-classical calculation:
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Effect of Shear induced

Irreversible Structural changes:

Enhanced contribution of

Stretching modes supported by 

Oxygen atoms, increasing D2 band
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Damped Harmonic Oscillator Model

for the Dynamic Structure Factor 

eigenfrequency
attenuation

Inelastic Neutron or X-ray scattering

is based on wave-vector assumption

Measurement of Acoustic Attenuation in Glasses
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IXS: Inelastic X-ray Scattering

POT: picosecond optical technique

BUVS /BLS: Brillouin Ultraviolet/Light Scattering

TJ: Tunneling Junction

Inverse Attenuation Time:

2 4 21
; ;w w w


 = 

Origin of the frequency dependence

of the Acoustic attenuation Time:

Anharmonicity ? Low Scattering ? 

Strong Scattering ?

q,w


q

Ultrasound

and Brillouin 

Scattering

UV inelastic

Scattering

Picosecond

Acoustics

Inelastic

Neutron and X-ray

Scattering

Measurement of Acoustic Attenuation in Glasses



Molecular Dynamics Simulations

at different Temperatures

H. Mizuno, et al.(2020)

Experimental Results
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A. Lemaitre et al (2016)

4 ln( )  for 3Dk k  −

Structural stress anisotropy

Long-rang correlations

4/ k
➢ (Anomalous) Rayleigh Scattering

C *,C

, ( ) ( ) ( ) ( )
2

2
: *   with  * : * .  Iu

div C f f C n S
t

     


= + =


F. Lund et al (2021)

➢ Scattering on Esheby Inclusions (plastic defect):

➢ Anharmonicity on double well potential:

2

3

/ 1/

( )

X g

B

v

k T T

C T T

w

w 

=   


  


 

Fermi Golden rule

scattering rate 

of phonons 

with tunneling
P. Anderson et al, 

W.A. Philipps (1972)



Effective modeling of Acoustic Attenuation in Glasses
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IXS: Inelastic X-ray Scattering

POT: picosecond optical technique

BUVS /BLS: Brillouin Ultraviolet/Light Scattering

TJ: Tunneling Junction

Sound attenuation = Inverse Attenuation Time:

2 4 21
; ;w w w


 = 

Effective modelling: two parallel processes

Quality factor (𝑄−1)
𝐺′′

𝐺′
𝜔 = Φ(𝜔, 𝛼, 𝜏1, 𝜏2)

Γ

𝜔
𝜔 = 𝑄−1 (𝜔)

3 parameters: 

𝛼 =
𝜇2
𝜇1

, 𝜏1 =
𝜂1
𝜇1

, 𝜏2 =
𝜂2
𝜇2

with 𝛼(T)

H. Luo, et al (2021)



IXS: Inelastic X-ray Scattering

POT: picosecond optical technique

BUVS /BLS: Brillouin Ultraviolet/Light Scattering

TJ: Tunneling Junction

Sound attenuation = Inverse Attenuation Time:

2 4 21
; ;w w w


 = 

Effective modelling: two parallel processes

Quality factor (𝑄−1)
𝐺′′

𝐺′
𝜔 = Φ(𝜔, 𝛼, 𝜏1, 𝜏2)

Γ

𝜔
𝜔 = 𝑄−1 (𝜔)

3 parameters: 

𝛼 =
𝜇2
𝜇1

, 𝜏1 =
𝜂1
𝜇1

, 𝜏2 =
𝜂2
𝜇2

with 𝛼(T)

1K

300K
T      , 

1IR

ANH

w 

w 

+
=

H. Luo, et al (2021)

Effective modeling of Acoustic Attenuation in Glasses



No wave-vector in disordered materials Apparent Attenuation and Internal friction

Anharmonic Processes Different Frequency dependences of attenuation

Conclusion Phonons in Amorphous Materials



➢ What are the microscopic sources of mechanical deformation ?

➢ Is it possible to define Phonons ?

➢ Is it possible to quantify Thermal transport ?

In Amorphous Materials



J.-B. J. Fourier 
(1768-1830)

Out-of-Equilibrium Fluxes:

Fourier’s Law

Thermal Conductivity

Diffusivity

Energy Conservation:

HOT COLD

Flux of heat



Thermal Conductivity in crystals (Kittel)

In crystals, phonons = quantum of vibrational energy with wave vector K

Thermal energy transfer = random diffusive process

Kinetic Theory of Thermal Conductivity:

1

2
n w

 
+ 

 

x

T+DT T

lx

cDT X x

dT dT
T v

dx dx
D = =

Net flux of Energy:
1

3
q x x X X

N N dT N dT
j v c T v c c v

V V dx V dx
= − D = −  −

1

3
XK C v 

X
, phonons mean free path

Heat Conductivity

X

Geometrical scattering: 

crystal boundary, lattice imperfections…

Scattering by other phonons: 

anharmonicity, umklapp processes…

3   X L K C T  

1 1
X

phononsn T
 

In Crystals



Some Measurements of Thermal Conductivity

Y. Touloukian, Thermophysical Properties of Matter

3K T



3K T

2K T

Some Measurements of Thermal Conductivity

Y. Touloukian, Thermophysical Properties of Matter



Resonant scattering
of phonons on 

« 2-level systems »?
(Hunklinger et al 1986)

plateau:
Resonant scattering

of phonons by 
« quasi-local vibrations»?

(Buchenau et al. 1992)

Strongly scattered modes?
(Wyart et al. 2010)

Diffusion mechanism
for heat transfer

due to
clusters vibrating
with random phases?

(Cahill et al 1988)

D. Parshin (2013)

Thermal Conductivity

2K T



1( , , )f r p t drdp = Mean number of particles which, at time t, 

are in the phase space at (r,p) within drdp
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Transportation of Energy: Boltzmann Equation in Glasses
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one-particle interactions BBGKY

Boltzmann Equation: (collision) is no longer valid
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Transportation of Energy: Boltzmann Equation and BBGKY Hierarchy

Conservation of the total average energy:
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Out-of-equilibrium Linear expansion of the distribution functions f1 and f2: 

The thermal conductivity results from lattice dynamics, and particles motion …



The theory of Allen and Feldman for Thermal Conductivity in Glasses

P.B. Allen and J.L. Feldman (1993)

Heat current density operator S

Thermal Conductivity 

« Interband » conductivity due to 

coupling between extended phonons 

(propagons?)

usual « intraband » conductivity
1

3
Cv
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C T D
V

 

( )
2 2

2
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4
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D S
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 w w
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Diffusivity



In crystals, phonons describe the atoms 

vibrations as plane waves.

In disordered materials, plane waves are 

scattered on the vibrational modes 

known as propagons, diffusons, and locons.

Mechanical to Thermal Energy Conversion in Glasses

Y. Beltukov et al (2018)

Propagons

Diffusons

Locons

w

Diffusons

n=4THz



Propagons

Diffusons

Locons

𝐶 𝑇, 𝜔 : phonon specific heat. 
g(𝜔): density states. 
𝑣(𝜔): sound speed.
𝑙(𝜔): mean free path.
𝐷(𝜔): diffusivity.

Thermal conductivity: 

Y. Beltukov et al (2018)

In crystals, phonons describe the atoms 

vibrations as plane waves.

In disordered materials, plane waves are 

scattered on the vibrational modes 

known as propagons, diffusons, and locons.

Mechanical to Thermal Energy Conversion in Glasses



IR

IR



Attenuation for wwIR



Diffusivity for w>=wIR

IR
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1
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IR
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Ballistic Regime Diffusive Regime

Y. Beltukov et al. (2018)

Application to Thermal Conductivity in Glasses

 = /g Xv



( ) ( ) ( ) ( )
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T (K)

Thermal Conductivity in Glasses

~T2 ?

A. Tlili et al. (2019)

Ballistic

Diffusive

w>wIR

~T2

plateau

R.C. Zeller (1971)

hwIR/kB

w( )X



Wave-Packets Attenuation in nano-composites a-Si/c-Si

The role of the nanostructuration
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P. Desmarchelier et al. (2021)



Thermal Conductivity in a-Si / c-Si nanocomposite

~T2 ?

A. Tlili et al. (2019)

Ballistic part

Diffusive part w>wIR

~T2

amorphous

Enhancement of the diffusive contribution to Thermal conductivity in the nanocomposite

The transition frequency

to multiple scattering

is smaller

wIR



/ 1i mE E 

/ 4.6i mE E 

inclusions

inclusions

hwIR/kB
inclusions

hwIR/kB
amorphous

Rigidity contrast:



P. Desmarchelier et al. (2021)

2 THz

10 THz

5 nm
Longitudinal waves:

Role of the interconnections between the inclusions

Thermal Conductivity in a-Si / c-Si nanocomposite



EMD

P. Desmarchelier et al. (2021)

Thermal Conductivity in a-Si / c-Si nanocomposite



Departure of Vibrations from Plane Waves Contribution of Propagons and Diffusons

Nanostructuration of matter (for ex. plasticity) Affects the Thermal conductivity

Conclusion Thermal Conductivity in Amorphous Materials
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