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Outline
Ø Context: partial coherence in nanodevices

Ø Inelastic interactions: Self-consistent Born approximation (SCBA) 

Ø NEGF can also be applied to solve transport of phonons

• The Dyson equation.

Ø SCBA: numerically demanding --> direct approaches (LOA)

Ø Handwavy introduction to NEGF (electrons)

Ø Coupling transport of electrons and phonons: energy devices 
(thermoelectricity, solar cells…)

• The concept of self-energy à description of the contacts



Nanoscale:
Importance of 
quantum and 

coherent effects

5 nm transistors IBM, VLSI 2017

Integrated circuits

Okada Lab, UTokyo, Nat. Commun. 10, 43 (2019)

3rd generation solar cells

Thermoelectric generators

10 nm

Inside the devices
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Nomura Lab, UTokyo, Appl. Phys. Express 13, 095001 (2020)



Diffusion: Impurities, Phonons

Hy = Ey

Perfect quantum coherence

Life is not perfect.
Scattering with phonons, electrons, ...
Partial quantum coherence

Large classical device

Ideal nanodevice

Practical nanodevice

Electron in nanodevice
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Quasi-equilibrium



Diffusion: Impurities, Phonons

Hy = Ey

Quasi-equilibrium

Perfect quantum coherence

Life is not perfect.
Scattering with phonons, electrons, ...
Partial quantum coherence

Large classical device

Ideal nanodevice

Practical nanodevice

Electron in nanodevice
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Source Drain

Phonon

Channel

Modeling Approach – with scattering

What theoretical tool do we need?

Contact-nanodevice interface
Open boundary conditions

Scattering of electron with 
phonons / electrons / photons …
Partial phase coherence

Influence  of active region properties 
(band structure, impurities, defects)
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Left Right

Active



Description of nanodevices
• Electron: Schrodinger’s Equation
• Open nanosystem:

- Coupling with contacts
- Inelastic interactions

• Where are the energy levels of system?
->Hamiltonian of the nanodevice:

Effective Mass Equation (continuous)

Tight Binding (atomistic empirical)

Density Functional Theory (atomistic ab initio)

Predictive quantum mechanical methods are crucial for 
disruptive nanodevice design
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CBRAM

ETH, Nanoscale Adv. 2, 2648 (2020)

V

300 nm 4 nm 100 nm 200 nm15 nm

Al0.25Ga0.75As

GaAs

Al0.4Ga0.6As

Si GaAs
1017 cm-3

V

Resonant 
tunneling

Thermionic emission

¡FR

W

Si GaAs
1017 cm-3

¡FL

Hetereostructure

LIMMS, Nat. Commun. 10, 4504 (2019)



The Non-Equilibrium Green’s 
Function Formalism 

(a handwavy introduction)
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w Time independent Hamiltonian: YeY =H
Eigenvector Eigenvalue

Þ ( ) 0IH =- Ye

w Solution if det(H-eI)=0 for several values of e.

w For these values of energy (H-eI)-1 is infinite.

Þ idea: adding a complex term to avoid the divergence

Þ This is the retarded Green’s function: ( )
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w Physical parameters are “easy” to calculate:
Example: Density of states at the equilibrium
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The Dyson equation
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Region 1 Region 2
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w We have: VHH 0 +=



The Dyson equation
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Region 1 Region 2

V
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w Applicable to any type of perturbation V (connection to 
reservoirs, point defects, inelastic scattering etc…



Green’s function of a semi-infinite reservoir
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w Let’s consider a semi-infinite linear chain where:
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Green’s function of a 
semi-infinite reservoir



Green’s function of a semi-infinite reservoir
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w From Green’s function to wave function:

( ) ( ) beebe
b

e 2if,4i
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Equivalent to a plane wave!
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By solving the Dyson equation for the semi-infinite linear chain:

With e=2b cos(ka):



The concept of self-energy
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VLA VAR

Σ! = 𝑉"!𝑔!𝑉"!
#Σ$ = 𝑉$"

# 𝑔$𝑉$"

𝑔$ 𝑔!

𝐺(𝐸) = 𝐸𝐼 − 𝐻 − Σ! − Σ"
#$

Self-energy of 
the left contact

Self-energy of 
the right contact 𝑔

- Self-energies of the contacts: Modification of the Hamiltonian [H] to incorporate 
the « boundary conditions ». Elegant, but Not necessarily numerically more efficient 
(Scattering matrix approach).

- Concept of self-energy: 
-> much more general.
-> can be used to describe all kinds of interactions (e-phonon, e-photon, phonon-

phonon).

𝐺 = 𝑔 + 𝑔Σ% 𝐺

Dyson equation:

with Σ% = Σ! + Σ"



The NEGF algorithm (ballistic)

16

1) Retarded Green’s function:

3) Lesser/Greater Green’s function:

2) Lesser and Greater contact self-energies:

4) Carrier density:

5) Carrier current:

Out-of-equilibrium
local distribution

G. Baym, L. P.  Kadanoff, and Keldysh in 1962.



Treatment of inelastic interactions

17

1) Inelastic scattering self-energy (e-phonon, e-photon):

Phonon Emission

Phonon Absorption

E

E+hwL

E-hwL

AbsorptionEmission

2) New retarded Green’s function:

with

3) New lesser/greater Green’s function:

4) Current Calculation: Conserved? Yes  à OKNo :self-consistent Born approximation (SCBA)

Bose-Einstein
Phonon frequency



18

Self-consistent Born Approximation
and beyond…



The self-consistent Born approximation (SCBA)

19

• Advantage of NEGF: Any scattering can be included in 
the formalism via ∑ self-energy term.

• Self-Consistent Born Approximation (SCBA)

A lot of loops until 
converged

Dyson Equation

𝑔!: Non-interacting GF (ballistic)
𝐺: Full interacting NEGF
Σ: Interacting self energy

𝐺 = 𝐸𝐼 − 𝐻 − Σ!/# − Σ$%&'
%(

𝐺 = 𝑔) + 𝑔)Σ 𝐺 𝐺
𝐺( = 𝑔)%( − Σ( %(

𝐺* = 𝑔)%( − Σ* %(

= 𝑔)%( − Σ 𝐺*%(
%(

G. Baym, L. P.  Kadanoff, and Keldysh in 1962.



The self-consistent Born approximation (SCBA)
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• SCBA: Iterating until the conserving diagrams are more 
dominant than non-conserving diagrams 

1st iteration 
of SCBA

2nd iteration 
of SCBA

+ + +	⋯

+ + +	

𝐺% = 𝐼 − 𝑔&Σ 𝐺%'(
'(
𝑔& = 𝑔& + 𝑔&Σ 𝐺%'( 𝑔& + 𝑔&Σ 𝐺%'( 𝑔&Σ 𝐺%'( 𝑔& +⋯

+	⋯+	
Non-interacting GFFree phonon propagator

Red: Conserving Black: Non-conserving

Self-consistency: Numerically very expensive!



Lowest Order Approximation (LOA)

• Φ-derivable self-energy
– “Self-Consistent Approximations in Many-Body System”, G. Baym, 

Phy. Rev. 127, 1391 (1962)

– In this paper, G. Baym already mentioned that “In the 
above proofs of the conservation laws we need not have 
required  all the internal lines in Σ to be G(U)’s. They could 
also have been G0(U)’s.”

Σ 𝐺 =
𝛿Φ 𝐺
𝛿𝐺

𝚽-derivable condition

Σ 𝑔+ ≠
𝛿Φ 𝐺
𝛿𝐺

1st iteration of SCBA

𝐺 = 𝑔+ + 𝑔+Σ 𝑔+ 𝐺

!"
1/2!""

21



Lowest Order Approximation (LOA)
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• LOA: Collecting only the conserving diagrams for each order 

1st order LOA

2nd order LOA

+ + +	⋯

+ + +	

𝑔$ = 𝑔( + 𝑔(Σ 𝑔( 𝑔( = 𝑔( + 𝑔(Σ$Δ𝑔(

𝑔) = 𝑔$ + 𝑔(Σ)Δ𝑔( + 𝑔(Σ$Δ𝑔$

• Generalization of LOA algorithm

𝑔* = 𝑔*#$ + 𝑔( -
+,(

*#$

Σ*#+Δ𝑔+

Δ𝑔$

∙M. Paulsson et al. Phys. Rev. B 72, 201101(R) (2005)

Δ𝑔) Retarded(r)/advanced(a) 
notations suppressed

H. Mera et al., Phys. Rev. B 88, 075147 (2013).



LOA + Analytic Continuation
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• LOA series : Converge or diverge depending on the scattering 
strength (the value of 𝑀)

𝑓 𝑧 = 𝑓& + 𝑓(𝑧 + 𝑓)𝑧) +⋯+ 𝑓*+,𝑧*+, =
𝑙& + 𝑙(𝑧 + 𝑙)𝑧) +⋯+ 𝑙*𝑧*

1 + 𝑚(𝑧 + 𝑚)𝑧) +⋯+𝑚,𝑧,

𝑓 𝑧 =-
-,(

.

𝑓-𝑧- = 𝑓( + 𝑓$𝑧 + 𝑓)𝑧) +⋯

Radius of convergence
z

𝑓 𝑧

𝑔( + ∆𝑔$ 𝑀 + ∆𝑔) 𝑀) +⋯

Power series

• Pade Approximants : Analytic function outside the radius of 
convergence

LOA series



LOA + Analytic Continuation
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• LOA: Calculating only the first few orders
• LOA + Padé approximant: Simple, fast convergence for strong 

scattering 

Padé Table

𝐼$ = 𝐼( + ∆𝐼$𝑔$ = 𝑔( + ∆𝑔$

𝐼"/$ =

𝐼! 𝐼! + ∆𝐼% 𝐼! + ∆𝐼% + ∆𝐼&
𝐼!

1 − ∆𝐼%/𝐼!
𝐼! + ∆𝐼% − 𝐼!∆𝐼&/∆𝐼%

1 − ∆𝐼&/∆𝐼%
⋯

𝐼!
1 − ∆𝐼%/𝐼! + ∆𝐼%/𝐼! & − ∆𝐼&/𝐼!

⋮ ⋱

𝐼(/$ (Padé 0/1)

𝐼) = 𝐼$ + ∆𝐼)𝑔) = 𝑔$ + ∆𝑔) 𝐼$/$ (Padé 1/1)

𝐼; = 𝐼) + ∆𝐼;𝑔; = 𝑔) + ∆𝑔; 𝐼$/) (Padé 1/2)



1D linear chain simulation
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• Simulation Conditions
– 2 Band k·p Hamiltonian – Strong inter-band coupling
– VRL is an applied bias, considering constant electric field
– Optical phonon ħω = 60 [meV], SCBA tolerance ~ 0.1% 

5Å

Left 
contact

Right 
contact

VRL

−0.5−0.4−0.3−0.2−0.1 0 0.1 0.2 0.3 0.4 0.50

0.1

0.2

0.3

0.4

0.5

0.6

kx [1/Å]

E
[e
V
]

 

 

Second Band
First Band

µL/R

Y. Lee et al., Phys. Rev. B 93, 205411 (2016)



LOA Calculation – LOA current Series
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• Optical Phonon Interaction 
– LOA series converge or diverge according to strength of 

scattering
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Padé calculation – Current and density
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• Optical Phonon Interaction 
– Strong Scattering (Mop = 1×10-3 [eV2])
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Padé calculation – Current spectra
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Current Spectra at Drain
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Current Spectra
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• Optical Phonon Interaction 
– Strong Scattering (Mop = 1×10-3 [eV2])
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Application to 3D simulations



3D Nanowire Device simulations
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• N-type Silicon Square Nanowire by OMEN (ETH Zurich)
– <100> transport direction, LS=LD=9nm, LG=13nm
– 3 x 3 nm2 cross section, Doping in S/D = 1020 cm-3

Full-band tight-binding 
sp3d5s∗ Hamiltonian

Valence-force-field method

M. Luisier et al., Phys. Rev. B 80, 155430 (2009)



3D Nanowire Device simulations
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• N-type Silicon Square Nanowire
– 1st LOA with Padé 0/1: 90% accuracy, 3rd LOA with Padé 1/2: 95% accuracy

ID - VG

𝐼'()*+, = 𝐼! +<
-.%

'

∆𝐼-

∆𝐼' = 𝜆' '𝐼'()*+,

−<
-.!

'/%

𝜆' '/-∆𝐼-

∆𝐼! = 𝐼!

Nth order currents

Y. Lee et al., Phys. Rev. B 95, 201412(R) (2017)
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Anharmonic phonon-phonon 
scattering



Phonon transport based on NEGF
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• NEGF for electrons: Schrödinger equation

• NEGF for phonons: dynamical equation
with

Dynamical matrixVibration frequency Mass of the atoms (matrix) Displacement of the atoms

𝜔1M+Φ23
45 *𝑅 = *𝑂 Φ23

45 =
𝜕1𝑉6783

𝜕𝑅24 𝜕𝑅3
5

Harmonic Anharmonic

M. Luisier et al., Phys. Rev. B 86, 245407 (2012)



Phonon-phonon interaction self-energy
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Phonon-phonon interactions: the anharmonic decay of a high-
energy phonon (ω) into two lower energy phonons (ω-ωʹ and 
ωʹ).



Phonon-phonon interaction self-energy
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• 7$3(2$1('"*'8*1#0*$"#$%&'"()*+#'"'"*,-./*8%$&09'%:

Cross-plane thermal conductivity of Si thin film at 300K

First NEGF code for phonons validated!
d
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"Interfacial heat transport between Si/Ge”



Phonon-phonon interaction self-energy
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J1ω J2ω

ωmax, Ge

Interfacial modes

• Heat transport across smooth Si/Ge interface (still unclear)

Schematic of 
physical model

• An appreciable contribution of heat flux arises from Si phonons beyond the
cut-off frequency of Ge phonons.

• Strong phonon annihilation in the intermediate two layers around 12 THz,
which corresponds to the interfacial phonon modes.

• Around 14 THz: Decay of the optimal phonon modes in Si.

500 K

Optical modes

$%&'()*&0%&012!3*&+%&,-./)!"*&8%&H5)!3*&+%&6)7(#2*&2!"&8%&9):;*&<1=.%&>-?%&, @AI*&@JEIAK&FBAB@G%
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Temperature dependence

• Low T: anharmonic NEGF result coincides with the harmonic one (weak
phonon-phonon scattering).

• Overall spectral energy exchange: amplitude of two dips in the high-
frequency range (> 10 THz) gradually rises with temperature: decay of
interfacial phonon modes and optical phonon modes.

Interfacial

Optical Si
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Temperature dependence
!"#$%&'()&*&+)(,-&
.!/-&0101

• Thermal boundary conductance increases with temperature.
• Difference between the anharmonic result and the harmonic one also

becomes larger at higher temperature.
• Enhancement of 10% at RT and reaches about 20% at 600 K.
• Appreciably smaller than the results in a very recent study of the same

problem (Cornel).
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Energy based devices:
Coupling between electron and phonon 

transport

Heat transport may impact electronic properties 
and vice-versa: thermoelectricity
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Coupling between electron and phonon transport

Applicable to relatively small systems (few nanometers)

Ø Option 1: coupling GFs of electrons and those of phonons.

--> Self-energy of the electron-phonon coupling:

Replace the Bose-Einstein distribution (equilibrium) 
by the one of phonon Green’s function

Ø Drawback : numerically very demanding (full band description 
(phonons=bosons) and the non-local treatment of anharmonic 
interactions). 

Ø Advantage : Full quantum simulations: physical properties of the 
both phonons and electrons in a non-equilibrium regime.

R. Rhyner, M. Luisier, Physical Review B 89, 235311 (2014)
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Coupling between electron and phonon transport

Ø Option 2: coupling GFs of electrons and classical phonon transport.
NEGF equations for electrons

Heat equation

*M. Bescond et al. J. Phys.: Condens. Matter 30, 064005 (2018).
** M. Moussavou et al.”Phys. Rev. Appl. 10, 064023 (2018). 

Ø Advantage : can treat devices of several hundred of nanometers.

Ø Drawback : only provides the rigorous physical properties of 
electrons (validity of heat equation at the nanometer scale?)



Cooling at the nanoscale

Ø Self-heating: scientific and industrial issues

Urgent need of local source of cooling

Ø Significant reduction of lifetimes and performances.
Ø “Bulk” refrigeration is extremely power consuming.

Intel, 2004

CBRAM
Nanoscale Adv., 2, 2648 (2020)
Courtesy M. Luisier, ETH Zurich
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Original thermionic cooling devices
Ø Coupling localized state and tunneling barrier*:

*K. A. Chao, M. Larsson, and A. G. Mal'shukov, Appl. Phys. Lett., 87, 022103 (2005). 

ØMain idea: injecting cold electrons and extracting hot electrons.

x
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Ø Investigate the concept of local temperature at the nanoscale. 

W W: activation energy
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Ø The device is defined by 5 regions (see figure):
• 1: n-GaAs – Doping: ND=1024 m-3 – L1=150 nm.
• 2: Al0.3Ga0.7As – Doping: ND=1021 m-3 – L2=2.3 nm.
• 3: n-GaAs – Doping: ND=1021 m-3 – L3=5 nm. 
• 4: Al0.12Ga0.88As – Doping: ND=1021 m-3 - L4=150 nm.
• 5:  n-GaAs – Doping: ND=1024 m-3 – L5=150 nm.
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EFL

EFR

Thermionic 
processResonant 

tunneling

Current spectrum - T=300 K – VRL=0.4 V

Ø Current maximum injected from the left contact corresponds to the 
quantum-well state (tunnel injection).

Ø Current is also important above the AlxGa1-xAs region: thermionic 
component.
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Electron temperature vs Lattice temperature

Energy current Carrier current spectrum Heat power density

Ø Heat Power Density defines heat power transferred locally to the lattice.
Q>0 --> Energy transfers to phonon bath – Q<0 --> heat transfers to electrons 

Heat power density Q 
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Coefficient Of Performance - COP

Ø Cooling power increases with the applied bias, but...

Ø COP (=Cooling power/Appl. power) presents the opposite feature.

Applied power=VRL.I

Ø COP can be larger then 100% !!
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M. Bescond and K. Hirakawa, Phys. Rev. Appl. 14 (6), 064022 (2020). 
A. Yangui, M. Bescond, T. Yan, N. Nagai, and K. Hirakawa, Nature Commun. 10, 4504 (2019). 



49

Conclusion
Ø NEGF formalism provides most of the physical internal (LDOS) 

and external (current, electron density) properties of the system.

Ø Usual technique: Self-consistent Born approximation (SCBA) 

Ø NEGF can also be applied to solve transport of phonons

Future work: e-e interactions, include higher order
anharmonic phonon scattering, numerical improvements.

Ø Concept of self-energy: allows to describe many types of 
inelastic interactions (e-phonon, e-photon). 

Ø SCBA: numerically demanding --> direct approaches (LOA)

Ø Initially developed for electronic transport. 

Ø Coupling transport of electrons and phonons: energy devices 
(thermoelectricity, solar cells…)
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Deeper analysis on NEGF

Ø H. Haug & Jauho, “Quantum Kinetics in Transport and Optics of 
Semiconductors”, Springer.

Ø S. Datta, “Electronic Transport in Mesoscopic Systems”, 
Cambridge university press.

Ø Book chapter on NEGF : M. Lannoo and M. Bescond
Edited by F. Triozon, P. Dollfus, “Simulation of Transport in 
Nanodevices”, Wiley.



Thank you!
*e-mail: marc.bescond@im2np.fr
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