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Outline

» Context: partial coherence in nanodevices

» Handwavy introduction to NEGF (electrons)

 The Dyson equation.

* The concept of self-energy - description of the contacts

» Inelastic interactions: Self-consistent Born approximation (SCBA)

» SCBA: numerically demanding --> direct approaches (LOA)
» NEGF can also be applied to solve transport of phonons

» Coupling transport of electrons and phonons: energy devices
(thermoelectricity, solar cells...)
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Inside the devices

Integrated circuits
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Nomura Lab, UTokyo, Appl.‘Phys. Expréss 13, 095001 (2020)
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Electron in nanodevice

Large classical device
Diffusion: Impurities, Phonons

Quasi-equilibrium

Life is not perfect.
Scattering with phonons, electrons, ...
Partial quantum coherence

Perfect quantum coherence

Hy = Ey



Electron in nanodevice

Large classical device
Diffusion: | h

Quasi-equilibrium

Life is not perfect.
Scattering with phonons, electrons, ...
Partial quantum coherence

Practical nanodevice
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Perfect quantum coherence
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Modeling Approach — with scattering

[~ YVT= T0 -

Active

0
Left /mﬂwm\ Right

Phonon e

K

Contact-nanodevice interface
Open boundary conditions

N

Influence of active region properties
(band structure, impurities, defects)

Scattering of electron with
phonons / electrons / photons ...
Partial phase coherence

What theoretical tool do we need?




Description of nanodevices

* Electron: Schrodinger’s Equation
* Open nanosystem:
- Coupling with contacts
- Inelastic interactions
* Where are the energy levels of system?
->Hamiltonian of the nanodevice:
Effective Mass Equation (continuous)

l

Tight Binding (atomistic empirical)

l

Density Functional Theory (atomistic ab initio)

Predictive guantum mechanical methods are crucial for
disruptive nanodevice design
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The Non-Equilibrium Green’s
Function Formalism
(a handwavy introduction)



Where does it come from?

+ Time independent Hamiltoniarﬂ?ﬁ =gl¥) = (H - 5])‘5”> =0

Eigenvector Eigenvalue

+ Solution if det(H-&l)=0 for several values of .

+ For these values of energy (H-&l)7 is infinite.

— idea: adding a complex term to avoid the divergence

—> This is the retarded Green’s function: |G(g)= lim d
0 gl —H +inl

¢+ |In the eigenvalue basis, the expression is:

7,
G(g): ’{i’/g/lzklg‘_(j<+ i‘n

£, . Eigenvalue associated to the eigenvector ‘ Tk>
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Where does it come from?

* Physical parameters are “easy” to calculate:
Example: Density of states at the equilibrium

v General definition: N(g)=> 6(e-¢,)

n Delta function
Im\TrG = [1
m(TrGle)) == lim . _

1

lim

Gle)=lim> LA in a matrix expression: G(s)= :
ST e =&, +in 0

And: J g 8) e :{Arctantg;g’ﬂw =7

Therefore: [im 772 =rd(e—¢,)
(asd (8 B 8k) + 772

= |N(¢)=-—Im(Tr(G(¢)))| Dpos
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+ Hamiltonian of the coupled system: H :{

* Hamiltonian of the uncoupled system: H, :{

¢ Coupling matrix: :{

The Dyson equation

Region 1

0
H

21

+ \We have: H=H,+V
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The Dyson equation

Region 1 Region 2

v
o Let's define: G,(g)=lim(sel —H, + in[)_land Gle)=lim(el —H +inl)’

n—0" n—>0"

=G '(¢)=lim(el -H, -V +inl)=G,' -V

n—0*

= Dyson equation: |G(g)=G,(&)+G,(e)VG(e)

+ Applicable to any type of perturbation V (connection to
reservoirs, point defects, inelastic scattering etc...
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Green’s function of a semi-infinite reservoir

¢ | et’s consider a semi-infinite linear chain where:

5 O—O—0—0—0 Atom 0 is not led = HO
Q _
L5955 om 0 is not couple

BB B B
0 1 2 - -
‘H, 0 - -] 0 &w 0
0 0
H' = 0 H11 ﬂ ) 1 : g(): g.”
ﬂ ... .
S 0
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_Hoo ﬂ 0 a0 w 8o
. | 8w 8u
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0 B . | :
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Dyson equation:

l

g=g"+g'Vg

!

g, =8,

(Recursion method)

1

Green'’s function of a
semi-infinite reservoir
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Green’s function of a semi-infinite reservoir

* From Green’s function to wave function:

By solving the Dyson equation for the semi-infinite linear chain:

1 ER :
8ale)= 5l —iap =) if <2
With €=23 cos(ka):

=) g, (5)= 2;2 (Z,Bcos(ka)—iZ‘,B‘sin(ka))
= g,(¢)= éeik“

Equivalent to a plane wave!

0 1 2 3
O BQ B. B.
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The concept of self-energy

(0]

Phonon

-1
G(E)=|EI-H-2%, —3z]|

\

Self-energy of Self-energy of
the left contact  the right contact 9L x __ g x__» YR

Dyson equation:
X, = VL-I;élgLVLA Xp = VARQRVJR

G=g+gZCG with ZC =ZL+ZR

- Self-energies of the contacts: Modification of the Hamiltonian [H] to incorporate
the « boundary conditions ». Elegant, but Not necessarily numerically more efficient
(Scattering matrix approach).

- Concept of self-energy:

-> much more general.
-> can be used to describe all kinds of interactions (e-phonon, e-photon, phonon-

IIp%)rqon). s @



The NEGF algorithm (ballistic)

1) Retarded Green’s function: G. Baym, L. P. Kadanoff, and Keldysh in 1962.
Gr=(E-WVI-H-%, —%"]"

2) Lesser and Greater contact self-energies:
SLr(E) = —2Im(X] R(E)) X (frp(E))
Y7.r(E) = 2Im(X], (E)) X (1 — frp(E))

y . . < <
3) Lesser/Greater Green’s function: GS =G (Zf -+ ZE) Gl

+00
4) Carrier density: n; = —’i/ G<(j,7; E)dE
s Out-of-equilibrium
oo / local distribution
— [ LDOSG: ) (B, s, T))dE.
5) Carrier current: —00
o e . . .
Jjsjr1 = / dE~ [Hjj+1G~( + 1,5, E) = G=(5,5 + L, E)Hj 11,4
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Treatment of inelastic interactions

1) Inelastic scattering self-energy (e-phonon, e-photon):
Bose-Einstein

ZZzel(E) = M? [(nL + 1@E + th ’I’LL@E + th

Emission Absorption

Phonon frequency

0000000000000 00000000000O0O0 0O O O Et+the,

Phonon Emission

00000000 O0O0O0O 0000000000 00D0O0DO0DOOE
Phonon Absorption

0000000000000 000000000000O0O0OO0 O FEho

2) New retarded Green’s function:

1
Gr=[(E-V)I-H-%X}, -, — with 3 = 5 e — 23]

mel]

3) New lesser/greater Green’s function: G= = G" (E> + 32 + Zznel) G

4) Current Calculation:  Conserved? WNeo :selfiéonsistent Born approximation (SCBA)

oo e | . .
Jisjt1 = / dEﬁ H;j11G~(j+1,5;E) —G~(j,j + 1, E)Hj11 5]

—00
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Self-consistent Born Approximation
and beyond...



The self-consistent Born approximation (SCBA)

G. Baym, L. P. Kadanoff, and Keldysh in 1962.

Advantage of NEGF: Any scattering can be included in
the formalism via > self-energy term.

-1
G=|El—H—X% g —Ze_pn]
Self-Consistent Born Approximation (SCBA)
Gy =[go" —Z4]7°

G = go + goXlG]G .
° » A lot of loops until
. converged
Dyson Equation ®
— A1 -1
Jo: Non-interacting GF (ballistic) GN = Y0 — ZN ]
G: Full interacting NEGF - —1
>: Interacting self energy =g a 1 _ D [G N—1 ]]
i/Bn 19 @



The self-consistent Born approximation (SCBA)

* SCBA: Iterating until the conserving diagrams are more
dominant than non-conserving diagrams

1
Gn = |I — 9oZ[Gn-1l]l 90 = go + 9oE[Gn-11g0 + 9oE[Gn-1190Z[Grn-11g0 + -

LAl S P il S Camimt S

U4 \ U4 \ U4 \
st 2 : / \ / v 7 \
Istiteration 5 _ o0 5 Vo4 or 5 Vsl 3y L
of SCBA e
/” N\\
U4
,/—-\\ P Al N /""\\ Il N \\\
nd : . / \ / \ / \ 1 7 \\ \
20 qteration  —F —Ll—os—1s b 5l 5 151 5 1y L S U0 o 155
Of SCBA ,’—~~\ ,’—~~\ ,’—~~\
V4 \ V4 \ V4 \
i . ————n

’—-~
/, \

i A\ Free phonon propagator =2 Non-interacting GF

Red: Conserving Black: Non-conserving

Self-consistency: Numerically very expensive!
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Lowest Order Approximation (LOA)

* O-derivable self-energy

— “Self-Consistent Approximations in Many-Body System”, G. Baym,
Phy. Rev. 127, 1391 (1962)

— In this paper, G. Baym already mentioned that “In the
above proofs of the conservation laws we need not have
required all the internal lines in X to be G(U)’s. They could
also have been G,(U)’s.”

&d-derivable condition 1st iteration of SCBA

|G = &I;E;G] G = go + 9oZlgolG
. 0P|

N 2[g0] # ]

oG

o =112 =1/2DGG
imen 21



Lowest Order Approximation (LOA)

* LOA: Collecting only the conserving diagrams for each order
* M. Paulsson et al. Phys. Rev. B 72,201101(R) (2005)

’—-
’ .

/4
1t order LOA —> + —>1— iy

91 = 90 + 9oZlgolgo = go + 9021890 T __._.

Ay

, N ;. \
V4 \ V4 \
2nd grder LOA —t 1y 51 5 )

/4 \
[

>

gz = gl -I— gOZZAgO -I— gozlAgl Agz Retarded(r)/advanced(a)

notations suppressed

* Generalization of LOA algorithm
N-1

IN = 9n-1 1t 9o (ZN—nAgn)
n=0

H. Mera et al., Phys. Rev. B 88, 075147 (2013).
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LOA + Analytic Continuation

* LOA series : Converge or diverge depending on the scattering

strength (the value of M)

go +Ag9,(M) + Ag,(M?) + -+
LOA series

F@) =) fir = fo+ iz + 77 +
=0

Power series

0.1

/ s |"E.‘<act_1St term —2"" term —3™ term —4™ term —5™ tel’)l
f@" é/
1 ) ,/ \ -
0 7 0.02 0.04 0.;)6 0.;)8
2 ]
\ Radius of convergence

J

* Pade Approximants : Analytic function outside the radius of

convergence

f(2) =fo+ fiz+ 22 + - + flomzt™™
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LOA + Analytic Continuation

* LOA: Calculating only the first few orders

* LOA + Padé approximant: Simple, fast convergence for strong

scattering

g1 = 9o +A491

g2 =91 tA4g;

gz = g2 +Ags _>13
Iy
Iy

Lym = 1-AL/I
Iy

j‘> I, = Iy + AL

# Io/1 (Padé 0/1)

11/1 (Padé 1/1)

1 - All/IO + (All/lo)z

%+Ah I, + Al + AL
IO + AI]_ - IoAlz/All
1 _Alz/All
_Alz/lo
24




1D linear chain simulation

e Simulation Conditions

— 2 Band k-p Hamiltonian — Strong inter-band coupling
— Vg is an applied bias, considering constant electric field
— Optical phonon hw = 60 [meV], SCBA tolerance ~ 0.1%

0.1

0.6

—Second Band
---First Band

8504030201 0 0102030405

k [1/A]

Right

contact

Y. Lee et al., Phys. Rev. B 93, 205411 (2016)
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LOA Calculation — LOA current Series

* Optical Phonon Interaction

— LOA series converge or diverge according to strength of

scattering
[ Weak Scattering l [ Strong Scattering l
0.15 -
“I>rlopTicaL | | OPTICAL s
= = 0.10
IE'I 010 .E
= — = -
G&) -------- Ballistic g -------- Ballistic
---@--- SCBA ---@--- SCBA
S 0.05 1 LOA = 0.05 1" LOA
O : o— 2" LOA Q —e— 2" LOA
! 31 LOA 37 LOA
| —A— 4" LOA —Aa— 4" LOA
I —%— 5" LOA —¥— 5" LOA
000 0.00 L . . 1. L R
0.00 0.05 0.10 0.15 0.20 0.00 0.05 0.10 0.15 0.20
Voltage [V] Voltage [V]
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Padé calculation — Current and density

* Optical Phonon Interaction
— Strong Scattering (Mop =1 X 103 [eV?])

[ Current - Voltage l [ Electron Density l

0.15 8
CTapTreAr | | T x 10
OPTICAL | | . ;—'10
""" & | ---Ballistic
‘=5 o0 > 8 T SCBA
< ‘7 [ |~*LOA with Pade 2/3
| - g |
s Vx| Ballisti L 6
5 , e scBA || O
Pade 0/1 ,
g 0.051 e Padeon 8 4
@) Pade 1/1 8 7
[ 7 —&— Pade 1/2 &)
- 7 —%— Pade2/2 O N B |
5 —%— Pade 2/3 LT_] L T TS i R R R
000/ D 2 46 8 10 12 14 16

0.10 0.15 0.20

Voltage [V]

0.00 0.05 Position [nm]
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Padé calculation — Current spectra

* Optical Phonon Interaction

1.0

0.5

Energy [eV]

0.5

Energy [eV]

— Strong Scattering (Mop =1 X 103 [eV?])

[ Current Spectra ] -4 [ Current Spectra at Drain ]
x 10 0.0010 T
RA | N s e— Ballistic
- Y 2 0.0008 | e scBa ; OPTICAL
c = - Pade3/4 | |
g = : P
g 5 0.0006f o
I = [ o |
4% 8 oot
@) i ‘ Y B
5 2 00002 L\
2 — 8 [ ,.'f‘ : \“‘\;\
— o = 0.0000 Fe-oSm ®-0-o—e—o—
£ R [
Ad(C 4 — Q i
0 0002 i v v
5 10 15 0.00 010 020 030 040  0.50
Position [nm] Energy [eV]
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Application to 3D simulations
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3D Nanowire Device simulations

Full-band tight-binding
sp3dPs* Hamiltonian

M. Luisier ef al., Phys. Rev. B 80, 155430 (2009) 3

imen

* N-type Silicon Square Nanowire by OMEN (ETH Zurich)
— <100> transport direction, Li=L;=9nm, L;=13nm
— 3 x 3 nm? cross section, Doping in S/D = 10%° cm-3

w

Electron Energy (eV)
P

N
. -

Valence-force-field method

()

0.2 4 6 .08 1
kx &ormaqlzed)
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3D Nanowire Device simulations

* N-type Silicon Square Nanowire
— 15t LOA with Padé 0/1: 90% accuracy, 3@ LOA with Padé 1/2: 95% accuracy

| Ip-V¢ |

-5
10 ¢ g 1
| Nt order currents | . | [--Ballistic
10 | __
y | Ss(tJBA 0.8
10 "+ * 17 LOA
Inthioa = Io + z AL, 0
=1 108, -=Pade 0/1
< | +-Pade 1/2

Aly = (/11\/) INthLOA :/o 107°
s, 07

Aly = Iy 10_125
0 0.1 0.2 0. 0.4 0.5 0.
Vo)

Y. Lee et al., Phys. Rev. B 95, 201412(R) (2017)
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Anharmonic phonon-phonon
scattering

32



Phonon transport based on NEGF

* NEGF for electrons: Schrodinger equation
(EI-H)p=0 wmp [G*E)

* NEGF for phonons: dynamical equation

|V|+CI)U —_ 0 with CI)U —

nm

Vibration frequency Mass of the atoms (matrix) Dynamical matrix Displacement of the atoms

aZVharm

(g)

0N hr O/Gb 4
A’ AD

aAr’ ,BAO a'Ar’ /),M r' A’ A
ArAr' \6) A6 ‘ Aé)
Al KAOAO' SArAG®  OArAr'Af
Harmonic Anharmonic

M. Luisier et al., Phys. Rev. B 86, 245407 (2012)
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Phonon-phonon interaction self-energy

« Anharmonic phonon NEGF methodology development

(1) Development of anharmonic NEGF formalism for 3D nanostructures

(2) Parallelized computational framework

(3) DFT (ab initio) input of both 2"d- and 3"d-order FCs
Greater/lesser scattering self energy matrix:

v (o34, Z 2 Z‘Dﬁﬁij @,.9, -9)P7 (9} —q,,-q))
1112[314 ]1]2]3]4
»do' ... <> , ,
o i (034,)G; " (0 - 09, —q")
(@'3q))

(@9, ) Phonon-phonon interactions: the anharmonic decay of a high-
energy phonon (w) into two lower energy phonons (w-w’ and
w’).

(0-0'3q, -4q")

Y. Guo, M. Bescond, Z Zhang, M Luisier, M Nomura, S Volz, Phys. Rev. B102, 195412 (2020).
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Phonon-phonon interaction self-energy

« Validation of the anharmonic phonon NEGF framework

30 - - ——— - ‘ - 100
t I L) 56 *o
O Present MC+DFT(1%" Nearest Neigh.) - x 8
o5 O Present ballistic NEGF il I Q
< A Present anharmonic NEGF R =
£ 'S o
220 i 5
2
> o 107 a 1
) 2
S 151 1%
e (o] €
S o ®  Jiang et al. 2016, Exp.
TEu 10 O ] O Vermeersch etal. 2016, MC+DFT
5 o oA V Huetal. 2020, MD(Tersoff)
= A A D> Hu et al. 2020, BTE(Tersoff)
5+ EIZ . ) O Present MC+DFT(3rd Nearest Neigh.)
107 F ¢ Present MC+DFT(1% Nearest Neigh.) ]
oo a0 i=! —4A— Present anharmonic NEGF ]
o 1 L L L 1 1 ' P L ' L il 1 1 Lol ' ' PR | L PR T S S S | L PR R S S A |
10° 10" 10° 10" 102 103 104
i Thickness (nm) Thickness (nm)

Contact 1 Device region Contact 2
® 00 0000000006000 0060O0CO

Seseneselsseteetetetereereneteletorese Cross-plane thermal conductivity of Si thin film at 300K
RS TSR R XX IS

OOLOUEER UL First NEGF code for phonons validated!
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"Interfacial heat transport between Si/Ge”

[ [
Contact 1 (Si) : Interface : Contact 2 (Ge)

® © o o o o 0 o o o
e © 6 ¢ ¢ o & o o o
®© 6 ¢ 0 06 o' 0 o o o
® © 6 0 ¢ o O o o o
® © o 00 00 o o o
® © ¢ o & o O o o o
® © 6 0 6 o o o o o
® © ¢ ¢ © o © o o o
® © 6 . 06 0.0 o o o
® 6 ¢ 6 & o o o o o
® © 6 o 06 o 0 o o o
® 6 o o ¢ o o o o o
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Phonon-phonon interaction self-energy

« Heat transport across smooth Si/Ge interface (still unclear) Optical modes

Contact 1 (Si) } Interface i Contact 2 (Ge) (a) A - - - - Harmonic (b) Ilayer1
o o o J.l@ }JZ(/{) 35 Anharmonic: J, - 4 = ----layer 2
e © © o QI ! > N Anharmonic: J,, 5t layer 3
e o o o o ! ;30- g layer 4
e o o o o ! 3 >
o.o.o.o.;.w =% 8| Lo AN
I \ z
¢ o } | % ) J\/’m\_//\’\_/\-' ~'( ' \
e o o o ¥ % 320 20 = el e SRS i
e o o o o | 2 —
e o o o o i EREL N j"’eri"
e o o o o | < [ T Y2u e ]
© o 0o o o : T v
w w B0} N
| | g | < \ V
() ’ = N2
5 / =3 > i
| 3
Schematic of o R LT
. 0 2 0 2 4 6 8 10 12 14 16
phySICal mOdel Frequency (THz) Frequency (THz)

500 K

« An appreciable contribution of heat flux arises from Si phonons beyond the
cut-off frequency of Ge phonons.

« Strong phonon annihilation in the intermediate two layers around 12 THz,
which corresponds to the interfacial phonon modes.

« Around 14 THz: Decay of the optimal phonon modes in Si.

Y. Guo, Z. Zhang, M. Bescond, S. Xiong, M. Nomura, and S. Volz, Phys. Rev. B103, 174306 (2021).
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Temperature dependence

A 20

@ (b) .

— 200K
10 f — 300K

500K
— 600K

w
o

[MW/(m?.K-THz)]
[MW/(m?.K-THz)]

3 L ] . .
210 5710 <+ Optical Si
0 — s -20 —_—
0 2 4 6 8 10 12 14 16 0 2 4 6 8 10 12 14 16 Interfacial
Frequency (THz) Frequency (THz)

 Low T. anharmonic NEGF result coincides with the harmonic one (weak

phonon-phonon scattering).

« Overall spectral energy exchange: amplitude of two dips in the high-

frequency range (> 10 THz) gradually rises with temperature:
interfacial phonon modes and optical phonon modes.

decay of

Y. Guo, Z. Zhang, M. Bescond, S. Xiong, M. Nomura, and S. Volz, Phys. Rev. B103, 174306 (2021).

imen 38

@



Temperature dependence

Ref.: Dai & Tian,
PRB, 2020
<
E
O

« Thermal boundary conductance increases with temperature.

250

200t

—
()]
o

—
o
o

()
o

(c)
O Harm. X
X Anharm. X X
X
O
g o7
300
X x X
200 m’m _ﬁ- -m O
100 -+ - Ref. Harm.
X 0 —}— Ref. Anharm.
0 200 400 600
200 400 600

Temperature (K)

1.2

(d)

1.4

1.2

200

Temperature (K)

« Difference between the anharmonic result and the harmonic one also
becomes larger at higher temperature.

« Enhancement of 10% at RT and reaches about 20% at 600 K.

« Appreciably smaller than the results in a very recent study of the same
problem (Cornel).

Y. Guo, Z. Zhang, M. Bescond, S. Xiong, M. Nomura, and S. Volz, Phys. Rev. B103, 174306 (2021).
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Energy based devices:
Coupling between electron and phonon
transport

Heat transport may impact electronic properties
and vice-versa: thermoelectricity




Coupling between electron and phonon transport

» Option 1: coupling GFs of electrons and those of phonons.

--> Self-energy of the electron-phonon coupling:

»S

inel

(E) = M? [(ng, + 1)G3(E =+ hwy) + (np)G3(E F hwy)]

™~ Replace the Bose-Einstein distribution (equilibrium)
by the one of phonon Green’s function

» Advantage : Full guantum simulations: physical properties of the
both phonons and electrons in a non-equilibrium regime.

» Drawback : numerically very demanding (full band description
(phonons=bosons) and the non-local treatment of anharmonic
interactions).

mmm) Applicable to relatively small systems (few nanometers)
R. Rhyner, M. Luisier, Physical Review B 89, 235311 (2014)
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Coupling between electron and phonon transport

» Option 2: coupling GFs of electrons and classical phonon transport.
NEGF equations for electrons

G" = [(E _ V)I = M= Zz T Z% o 2:nel]_l

Heat equation

—V - (kenVTac) = Q [GE(Tacv TOP)]

yS

inel

(E) = M? [(n; + 1)G5(E + hwy) + (np)G3(E F hwy)]

» Advantage : can treat devices of several hundred of nanometers.

» Drawback : only provides the rigorous physical properties of
electrons (validity of heat equation at the nanometer scale?)

*M. Bescond et al. J. Phys.: Condens. Matter 30, 064005 (2018).
**M. Moussavou et al.”Phys. Rev. Appl. 10, 064023 (2018).
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Cooling at the nanoscale

> Self-heating: scientific and industrial issues

10000 y T . B y-
= Rocket ! Intel, 2004 1Sl I 3 B 330
§1000 Hozele = - FAL (P : ' L OP v
> - # PRI OB 2 = | 340
B 100 Reactor—» =42 ¢ XL "I pr B g
5 /¥ 3
s gu( - / =
o . »~ 8086 o 300
g /m—i—Hﬁt—P‘l&te-V,ps
o 8008 8085 386 7 Pentium® proc

ey 28 e CBRAM

1970 1980 1990 2000 2010 Nanoscale Adv.., ?, 2648 (20?0)

Year Courtesy M. Luisier, ETH Zurich

» Significant reduction of lifetimes and performances.
» “Bulk” refrigeration is extremely power consuming.

Urgent need of local source of cooling
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Original thermionic cooling devices

» Coupling localized state and tunneling barrier*:

I E Single Barrier
o—— : Tunneling
Thermionic process
2 A\ ‘ \
g' *lw < W: activation energy
< ! o
gf 4‘_ > 8- ----------- -zf ———————————————————————————————
o eVl
Resonant LV ‘EH» Ty
tunneling X

» Main idea: injecting cold electrons and extracting hot electrons.

» Investigate the concept of local temperature at the nanoscale.

i/Bn *K. A. Chao, M. Larsson, and A. G. Mal'shukov, Appl. Phys. Lett., 87, 022103 (2005). @



First Structure

imen

n-GaAs
Al,Ga; ,As

&f

Resonant )
tunneling X

» The device is defined by 5 regions (see figure):
* 1:n-GaAs — Doping: Ny=10?* m= —L;=150 nm.
e 2:Al;5Gag,As — Doping: Ny=10%' m=> - L,=2.3 nm.
* 3:n-GaAs—Doping: Ny=10?' m= — L3=5 nm.
* 4: Al ,GagggAs — Doping: Np=10?t m= - L,=150 nm.
* 5: n-GaAs — Doping: Npy=10%* m= = Lg=150 nm.
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Current spectrum - T=300 K—-V,,=0.4 V
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-7
Current maximum injected frorri(’ém)e left contact corrxe1soponds to the
guantum-well state (tunnel injection).

Current is also important above the Al,Ga, As region: thermionic
component.
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Heat power density Q
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» Heat Power Density defines heat power transferred locally to the lattice.
Q>0 --> Energy transfers to phonon bath — Q<0 --> heat transfers to electrons
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Coefficient Of Performance - COP

--o-- Applied power
---A---Cooling power | " |
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» Cooling power increases with the applied bias, but...

» COP (=Cooling power/Appl. power) presents the opposite feature.

» COP can be larger then 100% !!

M. Bescond and K. Hirakawa, Phys. Rev. Appl. 14 (6), 064022 (2020).

A. Yangui, M. Bescond, T. Yan, N. Nagai, and K. Hirakawa, Nature Commun. 10, 4504 (2019).
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Conclusion

» NEGF formalism provides most of the physical internal (LDOS)
and external (current, electron density) properties of the system.

» Initially developed for electronic transport.

» Concept of self-energy: allows to describe many types of
inelastic interactions (e-phonon, e-photon).

» Usual technique: Self-consistent Born approximation (SCBA)

» SCBA: numerically demanding --> direct approaches (LOA)

» NEGF can also be applied to solve transport of phonons

» Coupling transport of electrons and phonons: energy devices
(thermoelectricity, solar cells...)

mmm) Future work: e-e interactions, include higher order
anharmonic phonon scattering, numerical improvements.
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Deeper analysis on NEGF

» S. Datta, “Electronic Transport in Mesoscopic Systems”,
Cambridge university press.

» H. Haug & Jauho, “Quantum Kinetics in Transport and Optics of
Semiconductors”, Springer.

» Book chapter on NEGF : M. Lannoo and M. Bescond
Edited by F. Triozon, P. Dollfus, “Simulation of Transport in
Nanodevices”, Wiley.

Hartrout J.W, Haug - 5
Antti-Pekka Jauho Simulation of Transport
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in Transport
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Second, Substantially Revised Edition
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Thank youl!
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