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INTRODUCTION

NANO-DEVICE

From Pr. Ali Javey: Schematic of 1D2D-FET with a MoS2 channel and single-
walled carbon nanotube gate (Science 354, 99).

N QUANTUM TRANSPORT



OUTLINE

v' An electron in condensed matter

v Down to nanoscale

v’ Transport: from classical to quantum
v' Methodology for quantum transport
v’ Particle current without interaction

v’ Energy and Heat currents without interaction



Quantum electron transport

WHERE ?

In matter condensed at nanoscale
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® electrons

‘ nuclei

An electron in condensed matter

A condensed matter sample




® electrons

my, I, P;

An electron in condensed matter

A condensed matter sample

H= K+ Kn+ Vet Vee+Vn

Kinetic energy g, = : K, = z a
. Zmo ZMa
l a
=
2 = —
e“Z e—e .
Potential energy Ve-n = — T g | 2 T i — 1
T l (44 2
1 e ZO(Z[S’
Coulomb interaction Ven = +=
Spin is ignored 2 ap |R0£ —Rg |



An electron in condensed matter

A condensed matter sample

® electrons O o O .
Onuclei .O O OO‘ o‘ O

N e
,L 9 -.Q® @°.
O 0 o -
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Qtd
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@ 0.0
@00

H= Ko+ Kn+ Vet Vee+Vp
* Born-Oppenheimer approximation
* Hartree-Fock approximation
/) * Independent-electron approximation ~ empirical models
— e
H = z Hi + Hegrrelations + He—vibrations T Z Hg + Hapharm

ab initio methods

imen



An electron in condensed matter

A condensed matter sample : crystalline solid
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An electron in condensed matter

A condensed matter sample : crystalline solid
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Electronic properties

ENERGY (eV)

from ab initio calculations

[from J. R. Chelikowski et al,

Physical Review B 14 (1976).]
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An electron in condensed matter

A condensed matter sample : crystalline solid
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to empirical models



An electron in condensed matter

A condensed matter sample : crystalline solid
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Electronic properties

to empirical models
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h2k?
- 2m*

Effective mass approximation
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electron

An electron in condensed matter

A condensed matter sample : crystalline solid

Energy t

h2k*

Electronic properties

to empirical models

Effective mass approximation
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An electron in condensed matter

A condensed matter sample : crystalline solid

® electron

Energy

» »
» »

k Density of states

Effective mass approximation

imen .



® electron

An electron in condensed matter

A condensed matter sample : crystalline solid

-------------------------------------------------------------------------------------------
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Effective mass approximation
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Raphael TSU

Down to nanoscale

Nobel Prize in Physics 1973
with lvar Giaever, Brian D. Josephson

Prize motivation: "for their experimental discoveries

regarding tunneling phenomena in semiconductors and
superconductors, respectively"

: \
IBM Thomas J. Watson Research Center £ ‘
Yorktown Heights, NY, USA :
1969 Leo ESAKI

search&discov

Man-made square wells offer insight and applications

Thanks to teams at two laboratories, Because of the unique ch who i igated their port prop-
that book ab ion of of h and their rehud su- erties, and by Raymond Dingle, Arthur
hanics, the di ional square perlattices, including thelr unusual d: Gossard and William Wiegmann® of
welL has b lized in a physical and neg Bell Lab ies (M Hill), who
object. Known as a * ture,” gions, important devices are dt to carried out a systematic determination

this object consists of nocuntaly depon result from this work, including un of theu energy Jevels by an optical-
ited thin layers of two different semi- hertz oscillators, amplifiers, g! thod. Although much
conductors of matching lattice con- and greatly improved injection lasers. of this work was done at low tempera-
stants. When these man-made square Laser oscillations from optically tures (2-10 K), the IBM group studied

welll are built up mto stacks of 10-100
per “ '.hay

(b oft.he t'

pumped multilayer structures of this
type have already been reported.!
Considered a8 lmportlnt as the po-

nite mean free path of the

tential Li are the

known as a “superlattice” (PHYSICS
TODAY, August 1973, page 20). These
structures open the possibility of creat-
ing quantum states with predet

energy levels and bandwidths.

physical insights the study o( these
structures affords. These were ex-
plored in papers by Raphael Tsu, Leroy
Chans. George Sai-Halasz and Leo
Esaki? at the IBM Research Center,

photocurrents up to room temperature
(300 K). Dingle told PHYSICS TODAY
that the laser oscillations mentioned
have also been observed at room tem-
perature.

The techniques used by the two labs
were similar in many respects: Both
used gallium arsenide as the “well” ma-
terial and gallium aluminum arsenide,

PHYSICS TODAY / AUGUST 1975 17

Physics Today, Search and Discovery,
Man-made square wells offer insight and applications, p.17, August 1975
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® electrons

nuclei

Down to nanoscale

A condensed matter sample : heterostructures

a few nanometers

15



Down to nanoscale

A condensed matter sample : heterostructures

® electron

* *

m% ) VB mA ’ VA mB ) VB

guantum well

conduction ] \ Confinement

band offset /\
R f\ {1\

imen .
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Down to nanoscale

Subband structures in quantum wells
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® electron

Down to nanoscale

A condensed matter sample : heterostructures

*

mg, Vp my ,Vy
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guantum barrier
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Down to nanoscale

é)electrons O O O O O . O 0,0 O
nuclei 0.0QQO ® OOOO

a few nanometers

Properties at nanoscale are determined from
 empirical models,

e abinitio approaches,

* multi-scale & multi-physics methods.

19



Down to nanoscale

DenSIty of states DOI:10.14279/depositonce-7076

' 4 5

3D 1D 0D

D(E) D(E) D(E)

£ Eg En E12 E13 E Eg E111E112E113 E
(c) (d)

Graphene TiS.

QDCCF

Diffuser plate/
-,

=
Mini-LED backlight =

Core — CdSe, CdS
Shell — ZnS, CdS, ZnSe
Amphiphilic surface

.Cd ®se/s
Zn/Cd ©5/Se

Blue suh-pix”

Green sub-pixel

Red sub-pixel

20




Down to nanoscale

DenSIty of states DO0I:10.14279/depositonce-7076

/Y I

1D oD
E
D(E) l D(E) [ D(E)[ D(E) [
g E11 E12 E13 E E E111E112E113 E 1/2 1 -
a i
Statistical function
f(E)

Observable, that is measure

particle or charge density

n = f dE f(E) xD(E)

imen .



TRANSPORT

dN

dt

. universite ALLIS DIGITAL!
Nanosciences de Provence i DE TOULON fomommm o CARNOT

n Institut Matériaux Microélectronique @ (AiX Marseille UNIVERSITE ISEN 9 g 22



Transport: from classical to quantum

~

\ ~~< _,L mean free path

electron-phonon interaction is mimicked by

collisions

® electron
.b t. n = ~ R
«‘-» vibratio m.’N -
— CONDUCTION : Coulomb force
Transport
velocity
Drude model (1900)
Current  Jeong = Electric field
density

Electrical conductivity

imen

T->L mean free path time

23



® electrons

imen

Transport: from classical to quantum

— DIFFUSION

Particle tfransport

Fick’s law (1855)
Jairr = —(—e)D gradn

Particle
density

diffusion coefficient

Current
density

24



Transport: from classical to quantum

DIFFUSION

Heat Tronseor’r

Fourrier’s law (1822)

¢=—-1gradT

Heat flux Temperature

Thermal conductivity

25



Transport: from classical to quantum

® electron

@ vibration| @ «O»* *Q* o & &
- & & & - -&

o & & & & @&

. f(r, p, t) is a probability density function, as
Particle Transport dN = f(r,p,)d3rd3p

Boltzmann’s transport of

., d
equation (1872) ot " f +F gradpf - a_ﬂ 1
co

diffusion force sources

imen .




Transport: from classical to quantum

é)electrons O O O@O . O O O O
1794 OOOOO . OOOO

\.‘

O O O O OLmeanfreepath O O O O

L < mean free path

Semi-classical approaches are no longer valid.
They could be “guantum-like” transformed,
but it is easier to start from a quantum model.



Transport: from classical to quantum

nanosystem

reservoir reservoir

a few nanometers

QUANTUM TRANSPORT



N

Quantum transport

HOW ?

With methods of quantum statistics

m A iation
Institut Matériaux Microélectronique @ (A'XJTM%TSSE%HE HUNNERS”—E ISEN 0 ' nissorclilucr)s

Nanosciences de Provence DE TOULON fmmmm

o CARNOT
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Today’s choices

General framework: introduction to
Nonequilibrium Green's functions

time-dependent

excitation )
s @ Interactions:

Marc Bescond'’s course

reservoir 4 > ._. Without interaction

The Landauer formalism

irticle and heat

@ - Particle & heat currents

. Issuesin
quantum thermodynamics

Institut Matériaux Microélectronique 0 (Ai)ﬁ n,\i/\l/aerrss?i[ge UNIVERSITE !LLSSE,EJ 9 - :\;SSOTC |i? G?g 30
Nanosciences de Provence === G\ st deceions DE TOULON [icorerranes] | | CARNOT



‘Methodology for quantum transport

Energy (eV)
o
-]

04

interactions

0.0
L

. 1 . L
\ 0 50 100 150 200
Thickness (nm)

electrical current | Journal of Applied Physics 128, 165704 (2020)

e ACtiVe region
Solar cells
load
M Association
Institut Matériaux Microélectronique (AlX Marsellle UNIVERSITE |SEN o | 4
n Nanosciences de FProvence @ jniversit ﬂ DE TOULON  tommowa 0 ICN/SQIIJLS% 31



Methodology for qguantum transport

/ Hamiltonian platform H,, \‘

RESERVOIR RESERVOIR
current

J@®) = (J)
HO

+ H L +H e-phonons + H R

+HTransfer->L +HTransfer->R

+ He—photons
+ He—e + .

ACTIVE REGION

H,.:is build from
* empirical models, & Take your favorite!

e abinitio approaches,
* multi-scale & multi-physics methods.



Methodology for qguantum transport

/ Hamiltonian platform H,, \‘

RESERVOIR RESERVOIR
current

J@®) = (J)
HO

+ H L +H e-photons + H R

+HTransfer->L +HTransfer->R

+ He—phonons
+ He—e + .

ACTIVE REGION

& It is not possible to solve the Schrédinger equation



Methodology for qguantum transport

Hamiltonian platform Hi;

RESERVOIR RESERVOIR
current

J@®) = (J)
HO

+ H L +H e-photons + H R

+HTransfer->L +HTransfer->R

+ He—phonons
+ He—e + .

ACTIVE REGION

Green's function of the G (1,1") = —i (¢bo| T [W(1)WT(1)] |b0)
active region
1=7%#1t time-ordering fermion field

imen
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Non-Equilibrium Green’s functions

Non-equilibrium Green’s functions NEGF
* retarded component: G}, (t,t") = —if(t — t") <[dfn(t’), d, (t)]+>

* lesser component: Gy, (t,t') = i(d;;l(t’)dn (t))

T time-ordering

active region

NG

d, (t)
sites: atoms, molecules...




Non-Equilibrium Green’s functions

Non-equilibrium Green’s functions NEGF

* retarded component: G}, (t,t") = —if(t — t") <[dfn(t’), d, (t)]+>

* lesser component: Gy, (t,t') = i(d;;l(t’)dn (t))

T time-ordering

active region

dy (t)

dl @) m

n

sites: energy levels




Stationary Spectral Formalism

H. Bruss and K. Flensberg, Many-body quantum theory in condensed matter physics, Oxford University Press (2004).

H. J. M. Haug and A.-P. Jauho, Quantum kinetics in Transport

H eise n berg'S eq Uation for G and Optics of Semiconductors 2nd edition, Springer (2008).

l (t,t)H) - (t—-t') > ¢
G"(e) = Go(e) + Gy ()X (e)G(e)

G{ known Green’s function:

G<(€) — GT(S)Z<(8 )Ga(E) perturbative treatment

Y. SELF-ENERGIES
‘ Charge and heat
contact to reservoir

Landauer formalism
BE)  INTERACTION

electron-boson

Marc Bescond’s course

Thursday morning

electron-electron:
IMmanN out of the scope of the present course 37



Stationary Spectral Formalism

In fact, you already know G" (¢) and G=(¢)
Spectral function: A(¢) = —2Im G" (¢)
Occupation number: n(e) = —iG=<(¢)
At equilibrium
A(e) — Density of states

n(e) - Fermi function

G<(e) =if(e)(—2Im G"(¢))

Fluctuation-dissipation relation

n= J de f(e) XDOS(¢)

38



Stationary Spectral Formalism

In fact, you already know G" (¢) and G=(¢)
Spectral function: A(¢) = —2Im G" (¢)

Occupation number: n(e) = —iG=<(¢g)
Out-of equilibrium
It is no longer possible to split

density of states and statistical
function in G" (&) and G=(¢)

n= fde f(e) XDOS(¢)

= —ijde G=<(¢)

39



CURRENTS

>

int

G"2< Green’s function l Ob ble A
servable

S € .

3 spectral response A
L
Yra< self-energy fu nctiok
gY »
Openness

Measure a j= A(€)
de

imen .

Interactions




In Schrédinger formalism

NbSe. Graphene TiS, Antimonene
:W @ AN
S X 0 \ava
Ha1 @ i . \/\/

In NEGF formalism

Regarding a
— nanosystem \

Core — CdSe, CdS
Shell — ZnS, CdS, ZnSe
Amphiphilic surface

.Cd ®se/s
Zn/Cd ®5S/Se

Blue sub—pix”

Green sub-pixel

QDCCF

Diffuser plate/

2N -
Mini-LED hackllw

Red sub-pixel

41



In Schrédinger formalism

Eigenvalue problem

[HO]l/) = EY

Energy

imen

A

Level structure

Energy

In NEGF formalism

Distributions

G7(e) = € — Hy

6(e —E),)

o
>

Spectral function: —2mIm G" (&)

42



In Schrédinger formalism In NEGF formalism

Eigenvalue problem Distributions
_ r _
|Hy + Hyes +Hintlp = EY G'(e) =——
X . € — Hy
Energy Energy
Ey 5(e —E))
Level structure Spectral function: —2mIm G (¢)

imen



In Schrédinger formalism In NEGF formalism

Eigenvalue problem Distributions
1
— T _

|Ho + Hyes +Hinelp = EY G'(e) = -

4 . € —Hy—2"(¢)

Energy Energy
Ey
-
Level structure Spectral function: —2mIm G (¢)

imen



In NEGF formalism

Distributions

1
GT (&) =
“ (&) =—— Ho — 27 (€)

energy shift < real part of X"

Inelastic scattering « energy-dependence of X"

in terms Gz(e + hwgq)
Z l Broadening / life time < imaginary part of 2"

o
>

Spectral function: —2wIm G (&)

45



OPENNESS: contact self-energy (exact)

H. J. M. Haug and A.-P. Jauho, Quantum kinetics in Transport and Optics of Semiconductors 2nd edition, Springer (2008).

RESERVOIR RESERVOIR
current

J@®) = (J)
Hy

a L -

oy
c cl
Lk ACTIVE REGION Rk

Hra = Yk Vank Codn + h.c. with a € {L, R}

h. c. for hermitian conjugated

imen .



OPENNESS: contact self-energy (exact)

H. J. M. Haug and A.-P. Jauho, Quantum kinetics in Transport and Optics of Semiconductors 2nd edition, Springer (2008).

LEFT RESERVOIR L ACTIVE REGION
n band index
K wave vectors

Energy

Yq (€) 7

1Y coupling between active region
LnK  and reservoir L

Fermilfunction
/ fr(e

Density of states

47



OPENNESS: contact self-energy (exact)

H. J. M. Haug and A.-P. Jauho, Quantum kinetics in Transport and Optics of Semiconductors 2nd edition, Springer (2008).

2
HOEDY AN

a,nk
* Vunk coupling between active region and reservoir & € {L, R}

= . -
*  9gnk(€) Green’s function of reservoir a

48



OPENNESS: contact self-energy (exact)

OPENNESS: contact to reservoir (exact)

H. J. M. Haug and A.-P. Jauho, Quantum kinetics in Transport and Optics of Semiconductors 2nd edition, Springer (2008).

2
HOEDY AN

a,nk
+ General ion: 0% (&) = Ay () + =T, (¢)
eneral expression @ 4, E) = Ng \&E _lE a \ &
* Semi-infinite chain model for reservoir // \\
SN T "l
000 0 0 -
L P P N N *
Pedagogical introduction to equilibrium Green’s functions: -os) )
condensed-matter examples with numerical implementations “‘. _ ;2:;5{;5”
DOI: 10.1590/1806-9126-RBEF-2016-0087 10l s '2' I . : . : )
(e—&)/V

\ Wide band limit approximation: 2% (&) = ii%[‘a /




Charge current in ballistic regime

Ballistic regime: without interactions

charge current I
_:>_ Observable I}

. <dNL>
L—=q dt
load »
I, ?




Energy
Left Active region Right
reservoir reservoir
o e e S h kbbbl LLL LIS ELEt e

Transport will depend on (from left to right)

* presence of an electron inside left reservoir

imen .



Energy

Left
reservoir

Active region

Transport will depend on (from left to right)

* presence of an electron inside left reservoir

* non-zero coupling between central region and
reservoirs Vg

imen

Right
reservoir

52



Energy
Left Active region Right
reservoir reservoir
E mfpmmmemoeomooooomonoes ) —— - oo
VLO

Transport will depend on (from left to right)

* presence of an electron inside left reservoir

* non-zero coupling between central region and
reservoirs Vg
* available states inside active region (density of states)

imen .



Energy

Left
reservoir

Active region

Transport will depend on (from left to right)

* presence of an electron inside left reservoir and a

vacancy in right reservoir

* non-zero coupling between central region and
reservoirs V;,and Vpq
* available states inside active region (density of states)

imen

Right
reservoir

54



spectral

2
J© =2 TEOXUi© = =@ | current

Left @ ® Active region Right

reservoir reservoir
° ¢ o

e * o —> ~

e © ® [Ce O ® °
o 0° Y

00% ¢ 000 ® o o

0 2%6% o0 o 00 '°

09 g0 ° o Oggo000

Transport will depend on (from left to right)

presence of.an eIectron.|n5|de left reservoir and a fr(&) > fr(e
vacancy in right reservoir

non-zero coupling between central region and
reservoirs Vo and Vg T(e) = Tr|I, G'Tx G|
available states inside active region (density of states)
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Charge current in ballistic regime

Ballistic regime: without interactions

charge current I
smmme—rny active region

2
J@©) =2 TExIi(e) - fa(@)]

load

This is the famous LANDAUER
formula for the current

with transmission

=22 [deT @1 - o)

T () = Tr|I, G'Tx G|

I, (¢) = —-2Im X} (¢)

56




Nanoelectronics

Energy

Left reservoir

fL(e)

2
=2t [ deT@Ifu@ - face)

] Active region Right reservoir
/ fL(&)-fr(e)
_____ ARSI ? A s
\
/ H qV | \ applied bias
/
————— rﬁ————————————————— e \E == ,UR

fr(e)

57



Nanoelectronics

Energy

Left reservoir

2
=2 e T@RE - fao)

Active region

Right reservoir

‘L[L — e A LAY — ., N — — — — — — -
T, =Ty qV | \ applied bias
—————————————————————— s - MR
fi(e) 7(e) = Tr[T, G'T; G*] | fr(&)
N\,
Densities of states of active region and reservoirs
iFan Couplings to reservoir 58




Nanoelectronics

Energy

Left reservoir

IL — GoAV

G():

2q2

7 guantum of

electrical conductance

Active region

Right reservoir

/ TL — TR - O
‘L[L — L -, e R\ — — — -
gV | \ applied bias
——————————————————————— - - - MR
fr(e) T =1 fr(e)
59




Thermolectricity

Energy

Left reservoir

| =2 [ deT@Ifue) - fate)

| Active region

\

@)

fL(e)

gradient

fr(&)

Right reservoir

60




Thermolectricity

Energy

Left reservoir

2
N L GIACEIA0)

\

\ W £, (e)-fr(e)

fL(e)

gradient

. T(e) = Tr[r, G'Tx G*] | fr(&)

| Active region Right reservoir

I N\,

. / “ r
Densities of states of active region and reservoirs
Couplings to reservoir
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Thermolectricity

Energy

Left reservoir

fL(e)

IL = 0
Active region Right reservoir
\\/ file)-1r (&)
|
... temperature | o
gradient
T(e) =1 fr(&)

62




®. Energy current

if =1 [ de T @) - fole

Left reservoir Right reservoir

fL(e) p T(e) = Tr[I, G'T; G*| | fr(&)

63



®» Heat current

2
=5 | dele = mIT@IAE) - fae)

b
I
I
\
\
\
Left reservoir

\|\ Active region Right reservoir

/ fL(e)-fr(e)
o AN
fL(e) “‘ T(e) = Tr[I, G'T; G*| | fr(&)

64




Energy & Heat currents in ballistic regime

Ballistic regime: without interactions

energy current I Observable IE
am active region -
dH;

If:_<dt>

load

®. Energy current

1f =+ [ de T@Io)  fol]

2
» Heat current I = ﬁj de e — u |7 (e)[fL(e) — fr(e)]

Quantum of thermal conductance k =

imen

2
kg T}

3h
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Thermoelectric coefficents (linear response)

I particle current

(,I;) - (67;1 _KS) (AIT) ] heat current

G electrical conductance

S Seebeck coefficient (or thermopower)
 Peltier coefficient

K thermal conductance

Onsager relation: T = ST,
Figure of merit: ZT) = SnG /k

Relation to NOISE
Sij

SuSy —Si

ZTO —

Sy current-current particle I or heat] correlations

i/Bn J. Phys.: Condens. Matter 27 (2015) 015302 (I (t)] (t,)>




Energy issues @nanoscale

Challenges for energy

Thermodynamics in the quantum regime
o Definition of energy, heat, temperature, potentials
o Heat and laws of thermodynamics

67



Energy current operator

Discrete nanocircuit model

Lattice Hamiltonian (non-interacting)

Hiot= Dis hg + Z(i,s) V(s,i)
hg = &N

V(s,i) = Bgjata; + h.c.

Bs; is the coupling parameter

We want to define the energy current operator in

af(a;) is the creation (annihilation) , e
the general discrete ballistic case

operator at site s(i)

1D problem [Wu and Segal 2009, J. Phys. A: Math Theor. 42]

imen .



Energy current operator

As for the charge current operator [Caroli et al. 1971, J. Phys. C: Solid State Phys. 4...]

We want to calculate ]f < hS + diV]f = 6ths continuity equation

- : . 1E _].f—>s+1 _].f—l—w
o—0 0 0 0 00 divjs =

) a
s-3  s2 s1 s Ii s+1 . s+2 s+3



Energy current operator

As for the charge current operator [Caroli et al. 1971, J. Phys. C: Solid State Phys. 4...]

We want to calculate ]SE < hS + diV]f = 6ths continuity equation

]f—l—>_s_ - ].SE—>S-I‘-1
l — |
= : i ]f s+1 _].5—1 S
00 -0 0 0 0 -
|
s-3 s-2 s-1 S s+l s+2  s+3

The problem is the sub-system definition

g H= ZS hg + Z(i,s)V(S' l)

In contrast with
N= Zs ng

H= ). hg 1
— 10 = .
charge current KJ hs — hs + > z V(S, l)

e



Energy current

We define the energy current operator in the general (3D) discrete case

S O Exchange symmetry E — _JE
- [hT; h ]__ > ]s—>r ]r—>s

]S—>T — L Energy conservation law

=>» We deduce the energy current in terms of NEGFs G

1 S r
<§.> () = fm[® )
/

h
first-neighbour contribution

/

particle CURRENT

Brs(}< t t 4 ZﬁrsﬂskG (t t) + Bkr/BrsG (t, t) + BrkﬂksG:r(ta t)]
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Energy current

We define the energy current operator in the general (3D) discrete case

_ S [h h ] O Exchange symmetry ]f_,r = —],l::_>5
]S—>1‘ _ ik r L Energy conservation law

=>» We deduce the energy current in terms of NEGFs G

<3 > () = 3Im [T TGt ) 4Zﬁrsﬁske ((6,8) + B Bea G5t 1) + BucBiaGR (8, 1)]

' 7 —_—

first-neighbour contribution second-neighbour

/ contributions

particle CURRENT current CORRELATIONS
sor )1 (D)
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Quantum electron transport

FOR WHAT ?

Managing energy at nanoscale
Time-resolved energy
dynamics Thermoelectrici’r‘

Thermal
management Photovoltaics

Pho’roelec’rrochemist[z

73



Main messages

time-dependent
excitation

particle and energy
currents

@ - When the system size is lower than the mean free path, semi-classical
approaches are no longer valid
Quantum transport is needed

Non-equilibrium Green's functions currently form a powerful and flexible
method for quantum transport modelling & simulations

Without interaction, the framework simplifies into the meaningful
Landauer formalism

@ - Atthe nanoscale, energy transport is still not completly elaborated
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