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NANO-DEVICE

ELECTRON QUANTUM TRANSPORT

From Pr. Ali Javey: Schematic of 1D2D-FET with a MoS2 channel and single-
walled carbon nanotube gate (Science 354, 99).

INTRODUCTION

nanosystem

photons

phonons

reservoir reservoir

Time-dependent
excitation



OUTLINE

ü An electron in condensed matter

ü Down to nanoscale

ü Transport: from classical to quantum

ü Methodology for quantum transport

ü Particle current without interaction

ü Energy and Heat currents without interaction
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WHERE ?

Quantum electron transport

In matter condensed at nanoscale
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An electron in condensed matter

A condensed matter sample

electrons

nuclei
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A condensed matter sample

electrons

nuclei
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Coulomb interaction 
Spin is ignored

Many-body problem

An electron in condensed matter



A condensed matter sample

electrons

nuclei

𝐻 = '
"

𝐻"# + 𝐻correlations + 𝐻e−vibrations +'
$

𝐻$% + 𝐻anharm

• Born-Oppenheimer approximation
• Hartree-Fock approximation
• Independent-electron approximation

ab initio methods 

empirical models
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𝐻 = 𝐾! + 𝐾" + 𝑉!#" + 𝑉!#! + 𝑉"#"

An electron in condensed matter



A condensed matter sample : crystalline solid

electrons

nuclei
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An electron in condensed matter



A condensed matter sample : crystalline solid

electrons

nuclei

Electronic properties

[from J. R. Chelikowski et al, 
Physical Review B 14 (1976).]

from ab initio calculations
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An electron in condensed matter



A condensed matter sample : crystalline solid

electrons

nuclei

Electronic properties

to empirical models
ZOOM
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An electron in condensed matter



A condensed matter sample : crystalline solid

electrons

nuclei

Electronic properties

to empirical models

10

𝐸 =
ℏ&𝑘&

2𝑚∗

Effective mass approximation

An electron in condensed matter



electron

Electronic properties

to empirical models

𝐸(𝑘) =
ℏ&𝑘&

2𝑚∗

Effective mass approximation

𝑚∗

k

Energy
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𝐻∗ =
𝑝&

2𝑚∗

An electron in condensed matter

A condensed matter sample : crystalline solid



electron

𝑚∗

E

Density of states

𝐸 =
ℏ&𝑘&

2𝑚∗

Effective mass approximation

k

Energy

E
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An electron in condensed matter

A condensed matter sample : crystalline solid



electron

𝑚∗

E

Density of states

𝐸 =
ℏ&𝑘&

2𝑚∗

Effective mass approximation

k

E E

Statistical function

1/2 1
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Fermi 
function

An electron in condensed matter

A condensed matter sample : crystalline solid

Measurable
quantity Density n, current J



Down to nanoscale
Nobel Prize in Physics 1973 
with Ivar Giaever, Brian D. Josephson

Prize motivation: "for their experimental discoveries
regarding tunneling phenomena in semiconductors and 
superconductors, respectively"

IBM Thomas J. Watson Research Center 
Yorktown Heights, NY, USA

1969

Raphael TSU

Leo ESAKI

14



A condensed matter sample : heterostructures

electrons

nuclei

a few nanometers
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Down to nanoscale



A condensed matter sample : heterostructures

electron

V

x+
𝐿
2

−
𝐿
2

quantum well

Confinement
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𝑚(
∗ , 𝑉(𝑚)

∗ , 𝑉) 𝑚)
∗ , 𝑉)

conduction 
band offset

Down to nanoscale
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DOI:10.1063/1.2425032

Subband structures in quantum wells

Down to nanoscale



A condensed matter sample : heterostructures

electron

x+
𝐿
2

−
𝐿
2

Tunnel effect
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quantum barrier

𝑚(
∗ , 𝑉(𝑚)

∗ , 𝑉) 𝑚)
∗ , 𝑉)

Down to nanoscale



electrons

nuclei

a few nanometers
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Properties at nanoscale are determined from
• empirical models,
• ab initio approaches, 
• multi-scale & multi-physics methods.

Down to nanoscale
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DOI:10.14279/depositonce-7076
Density of states

Down to nanoscale
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Density of states

particle or charge density 

DOI:10.14279/depositonce-7076

Down to nanoscale

Observable, that is measure 
𝑛 = B𝑑𝐸 𝑓 𝐸 ×𝐷 𝐸

𝑓 𝐸



TRANSPORT

!"
!#
?
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v

velocity
collisions

t -> L mean free path time

electron
vibration

Transport

Drude model (1900)

𝐽*+%, =
𝑛𝑞&𝜏
𝑚∗ 𝐄

𝑚∗

Transport: from classical to quantum

electron-phonon interaction is mimicked by

L mean free path
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Current 
density

Electric field

CONDUCTION : Coulomb force

𝐄

Electrical conductivity



electrons

Particle transport

𝐽,"-- = −(−𝑒)𝐷 𝐠𝐫𝐚𝐝𝑛
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Current 
density

Particle 
density

DIFFUSION

diffusion coefficient

v

𝐠𝐫𝐚𝐝𝑛

Fick’s law (1855)

Transport: from classical to quantum



Particle transport

𝐣 = −(−𝑒)𝐷 𝐠𝐫𝐚𝐝𝑛
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Current 
density

Particle 
density

diffusion coefficient

Fick’s law (1855)

Transport: from classical to quantum

DIFFUSION

𝐠𝐫𝐚𝐝 T

Heat Transport

𝛟 = −𝜆 𝐠𝐫𝐚𝐝 T
Heat flux Temperature

Thermal conductivity

Fourrier’s law (1822)



Particle Transport

Boltzmann’s transport 
equation (1872)

𝑓 𝐫, 𝐩, 𝑡 is a probability density function, as
𝑑𝑁 = 𝑓 𝐫, 𝐩, 𝑡 𝑑.𝐫𝑑.𝐩

𝜕𝑓
𝜕𝑡 +

𝐩
𝑚∗ . grad𝐫𝑓 + 𝐅. grad𝐩 𝑓 = 1

𝜕𝑓
𝜕𝑡 '())

diffusion force sources

electron
vibration

𝑚∗ 𝐫, 𝐩
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Transport: from classical to quantum



electrons

nuclei

L mean free path

L < mean free path

Semi-classical approaches are no longer valid. 
They could be “quantum-like” transformed, 
but it is easier to start from a quantum model.
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Transport: from classical to quantum



a few nanometers
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nanosystemreservoir reservoir

Transport: from classical to quantum

QUANTUM TRANSPORT



HOW ?

Quantum transport

With methods of quantum statistics
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nanosystem

photons

phonons

reservoir reservoir

time-dependent
excitation 

particle and heat 
currents

Without interaction

Interactions: 
Marc Bescond’s course

Issues in 
quantum thermodynamics

General framework: introduction to
Nonequilibrium Green’s functions
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Today’s choices

Particle & heat currents

The Landauer formalism



active region
electrical current I

load

interactions

Methodology for quantum transport

Journal of Applied Physics 128, 165704 (2020)

Solar cells
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+HL +HR+HTransfer->L +HTransfer->R

Methodology for quantum transport

Hamiltonian platform Htot

RESERVOIR

ACTIVE REGION

RESERVOIR
current 
𝐽 𝑡 = U𝐽

Htot is build from 
• empirical models,
• ab initio approaches, 
• multi-scale & multi-physics methods.

Take your favorite!😀
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H0
+ He-phonons
+ He-photons

+ He-e +...



+HL +HR+HTransfer->L +HTransfer->R

Methodology for quantum transport

Hamiltonian platform Htot

RESERVOIR

ACTIVE REGION

RESERVOIR
current 
𝐽 𝑡 = U𝐽

33

H0
+ He-photons
+ He-phonons

+ He-e +...

It is not possible to solve the Schrödinger equation😟



+HL +HR+HTransfer->L +HTransfer->R

Methodology for quantum transport
Hamiltonian platform Htot

RESERVOIR

ACTIVE REGION

RESERVOIR
current 
𝐽 𝑡 = U𝐽
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H0
+ He-photons
+ He-phonons

+ He-e +...

Green's function of the 
active region

ground statefermion fieldtime-ordering1 = 𝑟, 𝑡



Non-equilibrium Green’s functions NEGF
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Non-Equilibrium Green’s functions

n
m

sites: atoms, molecules…

𝑑% 𝑡 𝑑/
0 𝑡′

𝑇 time-ordering

active region

• retarded component: 𝐺%/1 𝑡, 𝑡2 = −𝑖𝜃(𝑡 − 𝑡2) 𝑑/
0 𝑡′ , 𝑑% 𝑡 3

• lesser component: 𝐺%/4 𝑡, 𝑡2 = 𝑖 𝑑/
0 𝑡′ 𝑑% 𝑡

ele
men

tary 

blocks



Non-equilibrium Green’s functions NEGF

Non-Equilibrium Green’s functions

active region

sites: energy levels

n

m

𝑑% 𝑡

𝑑/
0 𝑡′

𝑇 time-ordering
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• retarded component: 𝐺%/1 𝑡, 𝑡2 = −𝑖𝜃(𝑡 − 𝑡2) 𝑑/
0 𝑡′ , 𝑑% 𝑡 3

• lesser component: 𝐺%/4 𝑡, 𝑡2 = 𝑖 𝑑/
0 𝑡′ 𝑑% 𝑡

ele
men

tary 

blocks



𝐺] 𝜀 = 𝐺^] 𝜀 + 𝐺^] 𝜀 Σ] 𝜀 𝐺] 𝜀

𝐺_ 𝜀 = 𝐺] 𝜀 Σ_ 𝜀 𝐺` 𝜀
𝐺!" known Green’s function: 
perturbative treatment

𝑡, 𝑡2 → 𝑡 − 𝑡2 → 𝜀

H. Bruss and K. Flensberg, Many-body quantum theory in condensed matter physics, Oxford University Press (2004). 

Stationary Spectral Formalism
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Heisenberg’s equation for 𝐺 H. J. M. Haug and A.-P. Jauho, Quantum kinetics in Transport 
and Optics of Semiconductors 2nd edition, Springer (2008). 

Marc Bescond’s course
Thursday morning

This course
Charge and heat
transport in the 

Landauer formalism

Σ SELF-ENERGIES

OPENNESS
contact to reservoir

INTERACTION 
electron-boson

electron-electron: 
out of the scope of the present course



In fact, you already know 𝐺1 𝜀 and 𝐺4 𝜀

Spectral function: 𝐴 𝜀 = −2 Im 𝐺1 𝜀

Occupation number: 𝑛 𝜀 = −𝑖𝐺4 𝜀

𝐴 𝜀 → 𝐃𝐞𝐧𝐬𝐢𝐭𝐲 𝐨𝐟 𝐬𝐭𝐚𝐭𝐞𝐬

𝑛 𝜀 → 𝐅𝐞𝐫𝐦𝐢 𝐟𝐮𝐧𝐜𝐭𝐢𝐨𝐧

At equilibrium

𝐺4 𝜀 = 𝑖𝑓 𝜀 −2Im 𝐺1 𝜀

Fluctuation-dissipation relation

𝑛 = B𝑑𝜀 𝑓 𝜀 ×𝐷𝑂𝑆 𝜀

38

Stationary Spectral Formalism



In fact, you already know 𝐺1 𝜀 and 𝐺4 𝜀

Spectral function: 𝐴 𝜀 = −2 Im 𝐺1 𝜀

Occupation number: 𝑛 𝜀 = −𝑖𝐺4 𝜀
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Stationary Spectral Formalism

It is no longer possible to split 
density of states and statistical 
function in 𝐺1 𝜀 and 𝐺4 𝜀

Out-of equilibrium

𝑛 = B𝑑𝜀 𝑓 𝜀 ×𝐷𝑂𝑆 𝜀

= −𝑖 B𝑑𝜀 𝐺4 𝜀



CURRENTS

G
SL

Sr,a,≷ self-energy functions

Gr,a,≷ Green’s function

spectral response 𝓐

Observable A

Measure a
*+,

𝓐 𝜺
Openness
Interactions

Sint

SR 

40



In Schrödinger formalism In NEGF formalism

41

Regarding a 
nanosystem



In Schrödinger formalism

Level structure

In NEGF formalism

Energy

Spectral function: −2𝜋Im 𝐺1 𝜀

Energy

Eigenvalue problem Distributions

𝐻^ 𝜓 = 𝐸𝜓 𝐺] 𝜀 =
1

𝜀 − 𝐻^

𝐸- 𝛿 𝜀 − 𝐸5
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In Schrödinger formalism

Level structure

Energy

Eigenvalue problem

𝐻^ +𝐻]vw +𝐻xyz 𝜓 = 𝐸𝜓

𝐸-

In NEGF formalism

Spectral function: −2𝜋Im 𝐺1 𝜀

Energy

Distributions

𝐺] 𝜀 =
1

𝜀 − 𝐻^

𝛿 𝜀 − 𝐸5
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In Schrödinger formalism

Level structure

In NEGF formalism

Energy Energy

Eigenvalue problem Distributions

𝐻^ +𝐻]vw +𝐻xyz 𝜓 = 𝐸𝜓 𝐺] 𝜀 =
1

𝜀 − 𝐻^ − Σ](𝜀)

𝐸-

Spectral function: −2𝜋Im 𝐺1 𝜀
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In NEGF formalism

Energy

Broadening / life time 

energy shift 

Inelastic scattering

Distributions

𝐺] 𝜀 =
1

𝜀 − 𝐻^ − Σ](𝜀)

Spectral function: −2𝜋Im 𝐺1 𝜀

← real part of Σ1

← energy-dependence of Σ1

← imaginary part of Σ1

in terms 𝐺≷ 𝜀 ± ℏ𝜔-𝐪

45



HL HRHTL HTR

RESERVOIR

ACTIVE REGION

RESERVOIR
current 
𝐽 𝑡 = U𝐽

46

H0

𝐻}~ = ∑y,𝐤𝑉~y𝐤 𝐶~𝐤
� 𝑑y + ℎ. 𝑐. with  𝛼 ∈ 𝐿, 𝑅

𝐶9𝐤
;

𝑑<

ℎ. 𝑐. for hermitian conjugated

𝐶=𝐤
;

H. J. M. Haug and A.-P. Jauho, Quantum kinetics in Transport and Optics of Semiconductors 2nd edition, Springer (2008). 

OPENNESS: contact self-energy (exact)



LEFT RESERVOIR L ACTIVE REGIONEnergy

𝒇𝑳 𝜺

𝜇.

47

𝑇.

𝑉�,y𝐤

Density of states

coupling between active region 
and reservoir 𝐿

Σ@ 𝜀 ?

Fermi function

𝑛 band index
𝐤 wave vectors

H. J. M. Haug and A.-P. Jauho, Quantum kinetics in Transport and Optics of Semiconductors 2nd edition, Springer (2008). 

OPENNESS: contact self-energy (exact)



Σ$
≷ 𝜀 = '

$,%𝐤

𝑉$,%𝐤
&𝑔$,%𝐤

≷ 𝜀

• 𝑉$,%𝐤 coupling between active region and reservoir 𝛼 ∈ 𝐿, 𝑅

• 𝑔$,%𝐤
≷ 𝜀 Green’s function of reservoir 𝛼

H. J. M. Haug and A.-P. Jauho, Quantum kinetics in Transport and Optics of Semiconductors 2nd edition, Springer (2008). 
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OPENNESS: contact self-energy (exact)



Σ$
≷ 𝜀 = '

$,%𝐤

𝑉$,%𝐤
&𝑔$,%𝐤

≷ 𝜀

OPENNESS: contact to reservoir (exact)

• General expression : Σ/
0,2 𝜀 = Λ/ 𝜀 ± 𝑖 3

4
Γ/ 𝜀

• Semi-infinite chain model for reservoir

• Wide band limit approximation: Σ/
0,2 𝜀 = ±𝑖 3

4
Γ/

−𝑉 𝐼𝑚 𝑔!!" 𝜀
𝑉 𝑅𝑒 𝑔!!" 𝜀

⁄𝜀 − 𝜀# 𝑉

Pedagogical introduction to equilibrium Green’s functions: 
condensed-matter examples with numerical implementations
DOI: 10.1590/1806-9126-RBEF-2016-0087  

H. J. M. Haug and A.-P. Jauho, Quantum kinetics in Transport and Optics of Semiconductors 2nd edition, Springer (2008). 

49

OPENNESS: contact self-energy (exact)



Charge current in ballistic regime

Observable 𝐼�

𝐼: = 𝑞
𝑑𝑁:
𝑑𝑡

50

𝐼. ?

Ballistic regime: without interactions



Right 
reservoir

Left
reservoir

Active region

51

Energy

𝜀

Transport will depend on (from left to right)

• presence of an electron inside left reservoir

𝐼. ?



Right 
reservoir

Left
reservoir

Active region
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Energy

𝜀

Transport will depend on (from left to right)

• presence of an electron inside left reservoir

• non-zero coupling between central region and 
reservoirs  𝑉/$

𝑉�^

𝐼. ?



Right 
reservoir

Left
reservoir

Active region

53

Energy

𝜀

Transport will depend on (from left to right)

• presence of an electron inside left reservoir

• non-zero coupling between central region and 
reservoirs  𝑉/$

• available states inside active region (density of states)

𝑉�^

𝐼. ?



Right 
reservoir

Left
reservoir

Active region

54

Energy

𝜀

Transport will depend on (from left to right)

• presence of an electron inside left reservoir and a 
vacancy in right reservoir

• non-zero coupling between central region and 
reservoirs  𝑉/$ and 𝑉0$

• available states inside active region (density of states)

𝑉�^ 𝑉�^

𝐼. ?



Right 
reservoir

Left
reservoir

Active region
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Transport will depend on (from left to right)

• presence of an electron inside left reservoir and a 
vacancy in right reservoir 

• non-zero coupling between central region and 
reservoirs  𝑉/$ and 𝑉0$

• available states inside active region (density of states)
𝒯 𝜀 = Tr 𝚪: 𝐆𝐫𝚪< 𝐆𝐚

𝐽 𝜀 =
2𝑞
ℎ
𝒯 𝜀 × 𝑓. 𝜀 − 𝑓5 𝜀

spectral 
current

𝒇𝑳 𝜺 > 𝒇𝑹 𝜺



𝐼. =
2𝑞
ℎ O𝑑𝜀 𝒯 𝜀 𝑓. 𝜀 − 𝑓5 𝜀

with transmission 

This is the famous LANDAUER 
formula for the current

56
Γ$ 𝜀 = −2Im Σ$1 𝜀

𝒯 𝜀 = Tr 𝚪: 𝐆𝐫𝚪< 𝐆𝐚

𝐽 𝜀 =
2𝑞
ℎ 𝒯 𝜀 × 𝑓. 𝜀 − 𝑓5 𝜀

Charge current in ballistic regime

Ballistic regime: without interactions



Right reservoirLeft reservoir Active region

𝒇𝑳 𝜺

𝜇:

𝒇𝑹 𝜺

𝜇<

𝐼. =
2𝑞
ℎ
O𝑑𝜀 𝒯 𝜀 𝒇𝑳 𝜺 − 𝒇𝑹 𝜺

𝒇𝑳 𝜺 -𝒇𝑹 𝜺

qV applied bias
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𝑇: = 𝑇<

Energy

Nanoelectronics



Right reservoirLeft reservoir Active region

𝒇𝑳 𝜺

𝜇:

𝒇𝑹 𝜺

𝜇<

𝓣 𝜺 = Tr 𝚪/ 𝐆𝐫𝚪0 𝐆𝐚

Densities of states of active region and reservoirs
Couplings to reservoir

𝐼. =
2𝑞
ℎ
O𝑑𝜀 𝓣 𝜺 𝑓. 𝜀 − 𝑓5 𝜀

𝑓: 𝜀 -𝑓< 𝜀

qV applied bias
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𝑇: = 𝑇<

Energy

Nanoelectronics

𝐼:



Right reservoirLeft reservoir Active region

𝒇𝑳 𝜺

𝜇:

𝒇𝑹 𝜺

𝜇<

𝓣 𝜺 = 1

𝐼. = 𝐺8∆𝑉

𝑇: = 𝑇< = 0

𝐺! =
&?!

@
, quantum of 

electrical conductance

qV applied bias
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Energy

Nanoelectronics

𝐼:



Right reservoirLeft reservoir Active region

Energy

𝒇𝑳 𝜺

𝝁𝑳 = 𝝁𝑹

𝒇𝑹 𝜺

𝐼. =
2𝑞
ℎ
O𝑑𝜀 𝒯 𝜀 𝒇𝑳 𝜺 − 𝒇𝑹 𝜺

𝑇: 𝑇<

𝑓: 𝜀 -𝑓< 𝜀

temperature
gradient

60

Thermolectricity



Right reservoirLeft reservoir Active region

Energy

𝒇𝑳 𝜺

𝝁𝑳 = 𝝁𝑹

𝒇𝑹 𝜺

𝐼. =
2𝑞
ℎ
O𝑑𝜀 𝒯 𝜀 𝑓. 𝜀 − 𝑓5 𝜀

𝑇: 𝑇<

𝑓: 𝜀 -𝑓< 𝜀

temperature
gradient

61

Thermolectricity

𝐼:

Densities of states of active region and reservoirs
Couplings to reservoir

𝓣 𝜺 = Tr 𝚪/ 𝐆𝐫𝚪0 𝐆𝐚



Right reservoirLeft reservoir Active region

Energy

𝒇𝑳 𝜺

𝝁𝑳 = 𝝁𝑹

𝒇𝑹 𝜺

𝑇: 𝑇<

𝑓: 𝜀 -𝑓< 𝜀

temperature
gradient

62

Thermolectricity

𝓣 𝜺 = 1

𝐼. = 0



Right reservoirLeft reservoir Active region

𝒇𝑳 𝜺 𝒇𝑹 𝜺

𝑇: 𝑇<

𝑓: 𝜀 -𝑓< 𝜀
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𝐼:A

𝓣 𝜺 = Tr 𝚪/ 𝐆𝐫𝚪0 𝐆𝐚

𝐼.9 =
2
ℎ
O𝑑𝜀 𝜀𝒯 𝜀 𝑓. 𝜀 − 𝑓5 𝜀

Energy current

𝜇.

𝜇5
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𝐼:@

𝐼.: =
2
ℎ
O𝑑𝜀 𝜀 − 𝜇. 𝒯 𝜀 𝑓. 𝜀 − 𝑓5 𝜀Heat current

Right reservoirLeft reservoir Active region

𝒇𝑳 𝜺 𝒇𝑹 𝜺

𝑇: 𝑇<

𝑓: 𝜀 -𝑓< 𝜀

𝓣 𝜺 = Tr 𝚪/ 𝐆𝐫𝚪0 𝐆𝐚

𝜇.

𝜇5



Observable 𝐼��

𝐼.9 =
2
ℎ
O𝑑𝜀 𝜀𝒯 𝜀 𝑓. 𝜀 − 𝑓5 𝜀

𝐼:A = −
𝑑𝐻:
𝑑𝑡

𝐼.: =
2
ℎ
O𝑑𝜀 𝜀 − 𝜇. 𝒯 𝜀 𝑓. 𝜀 − 𝑓5 𝜀Heat current

Quantum of thermal conductance 𝜅 =
𝜋&𝑘)

&𝑇:&

3ℎ
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Energy current

Energy & Heat currents in ballistic regime

Ballistic regime: without interactions



𝑉
𝐽 = 𝐺�� −𝑆

𝜋 𝜅
𝐼
Δ𝑇

G	electrical conductance
S Seebeck coefficient	(or	thermopower)
𝜋 Peltier	coefficient
𝜅 thermal	conductance
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Thermoelectric coefficents (linear response)

Onsager relation: 𝜋 = 𝑆𝑇8
Figure of merit: Z𝑇8 = 𝑆𝜋𝐺/𝜅

Relation to NOISE

Z𝑇8 =
𝑆;<4

𝑆;; 𝑆<< − 𝑆<<4

𝑆;< current-current particle 𝐼 or	heat 𝐽 correlations

𝐼 particle current
𝐽 heat current

𝐼 𝑡 𝐽 (𝑡′)J. Phys.: Condens. Matter 27 (2015) 015302
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Energy issues @nanoscale

Challenges for energy

Thermodynamics in the quantum regime
o Definition of energy, heat, temperature, potentials
o Heat and laws of thermodynamics
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ℎw^ = 𝜀w𝑛w

Energy current operator

𝛽=> is the coupling parameter

𝑎=?(𝑎>) is the creation (annihilation) 
operator at site s(i)

Discrete nanocircuit model

We want to define the energy current operator in 
the general discrete ballistic case

Htot= ∑w ℎw^ + ∑ x,w 𝑉 𝑠, 𝑖

𝑉 𝑠, 𝑖 = 𝛽wx𝑎w�𝑎x + ℎ. 𝑐.
s r

𝑱𝒔→𝒓𝑬
𝜀1𝜀F

k

𝛽FG

1D problem [Wu and Segal 2009, J. Phys. A: Math Theor. 42]

Lattice Hamiltonian (non-interacting)
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Energy current operator

div𝐽FA =
𝐽F→F3HA − 𝐽FIH→FA

𝑎
s s+1 s+2 s+3s-3 s-2 s-1

a

𝐽FIH→FA 𝐽F→F3HA

continuity equationWe want to calculate ̇ℎw + div𝐽w� = 𝜕zℎw𝐽w�
As for the charge current operator [Caroli et al. 1971, J. Phys. C: Solid State Phys. 4…]
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Energy current operator

div𝐽FA =
𝐽F→F3HA − 𝐽FIH→FA

𝑎
s s+1 s+2 s+3s-3 s-2 s-1

a

𝐽FIH→FA 𝐽F→F3HA

ℎw = ℎw^ +
1
2
K
x,w

𝑉 𝑠, 𝑖

H= ∑w ℎw^ + ∑ x,w 𝑉 𝑠, 𝑖

H= ∑w ℎw

In contrast with

charge current

N= ∑w 𝑛w

continuity equationWe want to calculate ̇ℎw + div𝐽w� = 𝜕zℎw𝐽w�
As for the charge current operator [Caroli et al. 1971, J. Phys. C: Solid State Phys. 4…]

The problem is the sub-system definition



s
r

𝑱𝒔→𝒓𝑬
71

We define the energy current operator in the general (3D) discrete case 

è We deduce the energy current in terms of NEGFs G

Energy current

first-neighbour contribution

q Exchange symmetry
q Energy conservation law𝐽w→]� =

𝑎xw
𝑖ℏ ℎ], ℎw

𝐽=→09 = −𝐽0→=9

particle CURRENT

k
Phys. Rev. B 100, 024308 (2019) 
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We define the energy current operator in the general (3D) discrete case 

è We deduce the energy current in terms of NEGFs G

Energy current

second-neighbour
contributions

first-neighbour contribution

q Exchange symmetry
q Energy conservation law𝐽w→]� =

𝑎xw
𝑖ℏ ℎ], ℎw

𝐽=→09 = −𝐽0→=9

particle CURRENT current CORRELATIONS

s
r

𝑱𝒔→𝒓𝑬k

𝐽F→1 𝑡 𝐽1→G(𝑡)

Phys. Rev. B 100, 024308 (2019) 
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Quantum electron transport

Managing energy at nanoscale

Time-resolved energy
dynamics

Thermal 
management Photovoltaics

Photoelectrochemistry

Thermoelectricity

FOR WHAT ?



Without interaction, the framework simplifies into the meaningful
Landauer formalism

Non-equilibrium Green’s functions currently form a powerful and flexible 
method for quantum transport modelling & simulations

At the nanoscale, energy transport is still not completly elaborated

When the system size is lower than the mean free path, semi-classical
approaches are no longer valid
Quantum transport is needed

Main messages


