

INSTITUT LANGEVIN, Ondes et Images

(Yannick DE WILDE)

- **~100 members**
- Waves in complex media
- New concepts for imaging and sensing
- Subwavelength physics
- Number of people involved in the GDR: **5**

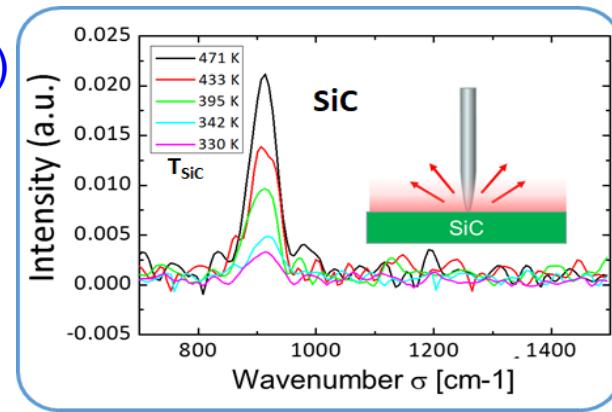
- Area of expertise of the lab:

WAVES: from fundamental studies to applications

- **Mechanical waves** (acoustic, seismic, and water surface waves)
- **Optical waves** (infrared and visible)
- **Electromagnetic waves** (radio frequency, microwave, Terahertz radiation)
- UMR7587: CNRS (3; 4; 5; 8; 9; 11) + ESPCI Paris, PSL University
(+ Sorbonne Université & Université de Paris)
- Which preferential axes: **A2 (Measurement & Metrology) ; T2 (Transport properties)**

Institut Langevin
ONDES ET IMAGES

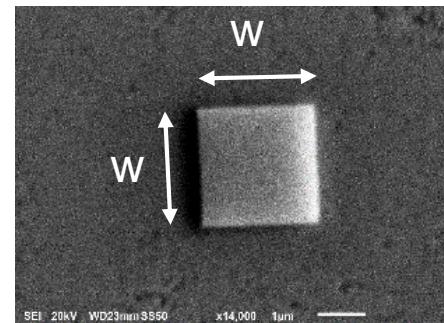
ESPCI PARIS PSL



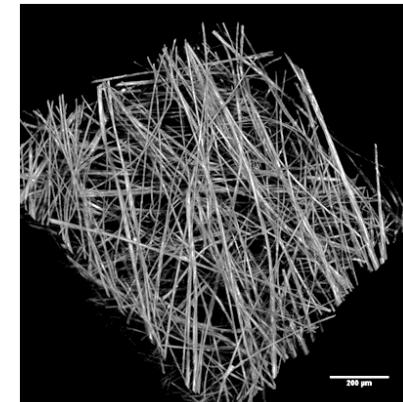
GDR Nanomaterials for Energy Applications
ELABORATION
MEASUREMENTS & METROLOGY
SIMULATIONS & THEORY
APPLICATIONS

Scientific expertise, overview, major themes in relation to the GDR

- Back bone of the labs regarding chemistry or physics (main research subject)
- Thermal radiation at subwavelength scales
- Infrared imaging and spectroscopy (near-field and far-field)
- Near-field microscopy (SNOM, TRSTM, ...)
- Which heat carriers
- Mainly Photons and Surface polaritons
- Type of energy conversion
? Thermophotovoltaic, ...
- What kind of applications are targeted ?
- Control & characterization of radiative properties, thermal management, test of performances, ...



TRSTM spectroscopy


Relevant scales: pW ; mK ; nm ; μ m

Technical or technological expertise in relation to the GDR issues

- What kind of materials/dimensions: **No materials are produced at Institut Langevin, but we are interested by**
- **Plasmonic materials:** Polar materials, Metals, Semiconductors
(typical sample size: 1 cm x 1 cm)
- **Micro/nanostructures:** metallic or dielectric antennas, graphene...
(size typically: 100 nm to $\sim \mu\text{m}$)
- **Complex** materials (glass fibers, etc)
- Bottom-up or top-down ?
Both

Plasmonic antennas

Glass fibers

- What kind of characterization technique are mastered by the lab/group/team
- Imaging and spectroscopy of thermal radiation in near-field and far-field
- Near-field microscopy: TRSTM, etc. (spatial resolution: 100 nm in the mid-infrared range, i.e. $\lambda \approx 10 \mu\text{m}$)
- FTIR spectroscopy combined with IR microscopy (thermal radiation from objects with size down to 1 μm)
- Thermography with infrared cameras
- Looking for collaboration: **Always open if exciting subject**