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Outline

1. Thermo‐Photo devices

• Integration of Thermoelectric 
micro‐nano devices 

• Photovoltaics devices 

• Thermophotovoltaic devices (with 
nanoscale gaps)

2. Kinetic devices

• Piezoelectric Kinetic Energy 
Harvesters 

• Electrostatic Kinetic Energy 
Harvesters 

3. Other devices

• Nano LED 

• Adiabatic logic with micro/nano devices 

• Piezoelectric energy converters 

4. Metrology

• Metrology for thermal properties of 
thermoelectric micro/nano devices

• Metrology & standardization for kinetic 
energy harvesters
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Integration of Thermoelectric micro-
nano devices

Dimitri Tainoff (Inst. Neel, MOIZ) 
Katir Ziouche (IEMN) 

• Integration of Thermoelectric micro‐nano devices 

• Photovoltaics devices 

• Thermophotovoltaic devices (with nanoscale gaps) 

• Piezoelectric Kinetic Energy Harvesters 

• Electrostatic Kinetic Energy Harvesters 

• Nano LED 

• Adiabatic logic with micro/nano devices 

• Piezoelectric energy converters 

• Metrology for thermal properties of thermoelectric 
micro/nano devices 

• Metrology & Standardization for kinetic energy harvesters
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Vertical technology

Bulk  micro devices

ΔTcf

Tc

Tf

Hot junctions

Cold junctions
Substrat

N P

Thermocouples perpendicular to both surfaces

• Most widespread technology, 
 miniaturization is challenging.

• The heat flows directly through
the thermoelectric materials
 The device efficiency depends
only on thermoelectric materials

 Figure of merit improvement ZT

Maximise the power factor ².

Minimise the thermal conductivity 

Materials
and ZT

# group 3
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[1]

• Vertical technology of µTEG or fluxmeter
(marketed products, MPG-D751 made by 
‘‘micropelt’’)

• Sensitivity of de 140 mV/K at 23°C 
(dimension 14 mm2, electrical resistance 300Ω)

• Made on flexible substrate

• Thermoelectric microgenerator (µTEG) 
and thermal microfluxmeter

• GreenTEG company created from Swiss 
Federal Institute of Technology (ETH)

Examples of vertical technology integration

[2]
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• Easier to integrate onto 
nano/micro TE device
fabricated on silicon

• Heat flows not only through
TE materials (support, 
concentrator and dissipator)

Planar technology

Micro-nano devices

Tc

Tf Cold junctions

Hot junctions

ΔTcf

Thermal insulation cavities
N P

Heat concentrator

Heat dissipator

Thermocouples parallel to both surfaces

Efficiency improvement :

 Maximise the figure of merit ZT of materials

 Design optimization to collect heat and
limit losses

Materials and ZT
# group 3

# group 6
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Examples of planar technology integration (micro-nano devices)

• Planar technology

• Numerous nanoTEG are coupling in
parallel low electrical resistance

• Application : micro-source of energy
for autonomous connected sensors.

Suspended thermopile 
(onto multi membranes) 

Planar monolithic
µTEG

[4]

• Technology of µTEG 

• High thermal planar resistance

• Out power ~300 µW/cm² for 1 W injected

[3]

Working Group 6 : Micro Nano Devices 8

Others examples of TE micro-nano devices

[5,6][8]

• Top down micromachining

• Growth of SiGe nanowires

• Si integrated TE generators

• Vertical nanostructures

• Micropower TE 
generator from thin Si membranes

[7]
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Photovoltaics devices

Jean-Paul Kleider (GeePs, FedPV) • Integration of Thermoelectric micro‐nano devices 

• Photovoltaics devices 

• Thermophotovoltaic devices (with nanoscale gaps) 

• Piezoelectric Kinetic Energy Harvesters 

• Electrostatic Kinetic Energy Harvesters 

• Nano LED 

• Adiabatic logic with micro/nano devices 

• Piezoelectric energy converters 

• Metrology for thermal properties of thermoelectric 
micro/nano devices 

• Metrology & Standardization for kinetic energy harvesters

Working Group 6 : Micro Nano Devices 10

• Nanostructured architectures
nanophotonics  increase light absorption through patterning
nanowires, radial junction nanowire solar cells
 decouple light absorption and electrical transport/carrier extraction

• Nanometric layers acting as passivation/buffer layers or enhancing collection 
of one type of carriers 
 concept of passivating selective contacts (e.g. in silicon PV)
 transport/extraction layers in perovskite PV (e.g. NiOx as hole transport 
layers, TiOx as electron transport layers, self-assembled monolayers)

Nano aspects: different levels, in different technologies
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Silicon nanowires: as an ultimate of texturing
Pyramid textured 

crystalline silicon [1]

Inverted pyramid 
silicon [2]

Black
silicon [3]

Silicon
nanowires [4]

planar junction

• Strong light trapping and anti-reflection
• Short distances to extract carriers
 Potentially higher open-circuit voltage and better 
performance for defective materials as compared to 
planar junction solar cells

Radial junction nanowire structures enable [5,6]

Main issues: passivation of nanowires at present, record efficiencies < 20%

radial junction

Few 
µms

Few 
nms
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KPFM measurements performed at 
the same location on NWs [7]

illustrating:

a) the topography

b) the contact potential difference 
(CPD) under dark conditions, 

c) the CPD under white LED 
illumination and 

d) the surface photovoltage (SPV)
 Voc of individual nanowires

Characterization of nanowire solar cells from AFM/C-AFM/KPFM 
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Concept of full area passivating selective contacts: example in Si 

• Silicon heterojunctions solar cells: (p)a-Si:H/(i)a-Si:H/c-Si
25.6% efficiency [8], world record of 26.7% in the IBC configuration [9]

• Poly-Si based selective contacts: (p+)poly-Si/SiOx/c-Si
25.8% efficiency on 2x2 cm2 area [10], 24.6% for 6’’x6” [11]

≈ 10-20 nm

≈ 1-5 nm

selectivity

passivation

Schematic view of a 
passivation selective

contact [12] 
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Thermophotovoltaic devices
with nanoscale gaps

Rodolphe Vaillon (IES) • Integration of Thermoelectric micro‐nano devices 

• Photovoltaics devices 

• Thermophotovoltaic devices (with nanoscale gaps) 

• Piezoelectric Kinetic Energy Harvesters 

• Electrostatic Kinetic Energy Harvesters 

• Nano LED 

• Adiabatic logic with micro/nano devices 

• Piezoelectric energy converters 

• Metrology for thermal properties of thermoelectric 
micro/nano devices 

• Metrology & Standardization for kinetic energy harvesters
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• Main parameters/materials and influence of nanomaterials: structures 
and fabrication techniques for building a nanoscale (< 1 m) vacuum gap 
between the hot (> 500 °C) and cold (room temp.) sides (see also near-
field radiative heat transfer devices ([1] but T < 200 °C))

Thermophotovoltaic (TPV) devices with nanoscale gaps

• Principle:

Higher generated electrical power at nanoscale gaps
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[2-5]

• Among them, two devices:

• Performances: < 1 mW.cm-2; estimated efficiency < 1%  

• Applications: thermal energy harvesting. Research stage (TRL <4)

• Future challenges: devices with much larger areas, temperature differences and performances 
(emitter/cell design challenges: see Working Group 3)

[3]

(500 × 500 μm2) (80 × 15 μm2)

[4]

Recent first convincing experimental demonstrations
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Piezoelectric Kinetic Energy
Harvesters

Guylaine Poulin-Vittrant (GREMAN)
Gustavo Ardila (IMEP-LAHC)
Vincent Consonni (LMGP)
Hélène Debéda (IMS)
Noelle Gogneau (C2N)
Maria Tchernycheva (C2N)

• Integration of Thermoelectric micro‐nano devices 

• Photovoltaics devices 

• Thermophotovoltaic devices (with nanoscale gaps) 

• Piezoelectric Kinetic Energy Harvesters 

• Electrostatic Kinetic Energy Harvesters 

• Nano LED 

• Adiabatic logic with micro/nano devices 

• Piezoelectric energy converters 

• Metrology for thermal properties of thermoelectric 
micro/nano devices 

• Metrology & Standardization for kinetic energy harvesters
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MEMS cantilever-type piezoelectric harvesters

• Principle: Vibration applied to a bending
cantilever (piezo layer on a passive substrate, 
Si or metal)

• Piezo films: various deposition methods [3]

 Thin films (< a few µm): 
sputtering, MOCVD, laser ablation processes, 
sol-gel process

 Thick films (> 10µm): 
hydrothermal method, aerosol-deposition, granule 
spray in vacuum, electrophoresis [4], screen printing, 
tape-casting…

[1]



6/17/2021

Working Group 6 : Micro Nano Devices 19

• Key issues: for integration in MEMS technology
Growth of oxide films on Si or metal substrates : inter-diffusion, 

large lattice & thermal expansion mismatch
Clamping effect on the substrate lower effective piezo

coefficient
Proper texturing of electrode layers
 If piezo layer thickness < 1µm  low generated voltage

MEMS cantilever-type piezoelectric harvesters

50µm thick PZT by screen
printing on stainless steel

9µW, 60Hz, 3 µW.Hz/mm3

(depends on current and 
distance to wire)

[1]

Gold ball‐bonding connection

[2]
0.5µW, 212Hz, 0.68g
40 µW.Hz/mm3

2µm thin AlN on SOI

• Performances:
10-3 to 10 µW/(cm2.Hz.g2)
or 10-4 to 10-1 µW/(mm3.Hz.g2)
on a frequency range: 100-1000Hz [3]
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Piezo-semiconducting nanowire based nanogenerators

A NW array embedded in a polymer matrix, between electrodes and on a rigid 
or flexible substrate. Various configurations :

[5]

[7]

[6]

NWs orthogonal to the substrate NWs parallel to the substrate

Electrodes are in 
contact with the 
NWs

Capacitive coupling 
between NWs and 
electrode via 
insulating layer

ZnO

GaN

[8]

ZnO

ZnO
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NW should have [9,10,11]: high aspect ratio, optimal density, low doping (charges 
screening), polarity uniformity.

Main parameters / influence of nanostructured device

+ other
electrification
effects (tribo, 
flexo…) under
debate

[14]

+ effect of Fermi Level Pinning [13]

[12]

Nanowire composite layer
Thin layer

Nanowire fraction[12]

NW environment:
Electrodes

and encapsulating layer
electrical and mechanical properties
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• Large variety of mechanical testing conditions 
(compression, bending) [15]

• Mostly under compression:
1-10 µW/cm2 @ a few N force 
@ 0.3 to 5 Hz [16]

• Comparison with bending cantilevers:
10-3 to 10 µW/(cm2.Hz.g2)

(base of a machine tool : 
10 m/s2 [3] ≈ 1g)

Performances and applications of nanogenerators

[15]

Applied force:
Bending at 1Hz
0.9ms‐2

Energy: 40nJ/cm2 per cycle
Average power 5µW/cm2
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Electrostatic Kinetic Energy Harvesters

Philippe Basset (ESYCOM)
Alain Sylvestre (G2ELAB)
Elie Lefeuvre (C2N)
Dimitri Galayko (LIP6)

• Integration of Thermoelectric micro‐nano devices 

• Photovoltaics devices 

• Thermophotovoltaic devices (with nanoscale gaps) 

• Piezoelectric Kinetic Energy Harvesters 

• Electrostatic Kinetic Energy Harvesters 

• Nano LED 

• Adiabatic logic with micro/nano devices 

• Piezoelectric energy converters 

• Metrology for thermal properties of thermoelectric 
micro/nano devices 

• Metrology & Standardization for kinetic energy harvesters
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 Need (high) capacitance variations + polarization

Main requirements for electrostatic transducers

• Spring-mass system 
(inertial or direct-pressure)

• Soft polymer covered by 
electrodes (direct-pressure)

• External DC source

• Charged electret

 Injection

 Poling

 Tribo-electrification
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• External mass for low 
frequency / low g
applications

• Bias from 
External DC source
Corona discharge 
 “Solid-state” electret

• Typ. 1-10 µJ / 
mechanical cycle / g / 
cm²

[1] [2]

[3]

[4]

Inertial Si-based MEMS KEH

For SHM (50 Hz) For smart watch (rotation)

For RFID tag (1‐10 Hz)For pacemaker (10‐20 Hz)
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• Capacitance variation is obtained with 
a deformable elastomeric dielectric 
material

• Polarization:
 Include an electret or a piezoelectric layer 
Or need an external electric field

• Upto mJ / cm3 / mech. cycle 
@ few kV and few 100’s% of deformation

• Applications: high-pressure/ extension 
systems (shoe sole, water waves…)

[5]

Dielectric elastomer & electrostrictive polymer

[6]

[8]

[7]
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[9]

[12]

[11]

[10]

Triboelectric (nano)generators (TENG)

Polarization by contact electrification 
of an electret layer

Mostly direct-pressure 
devices

• Lot of possible flexible materials:
 Harvesting from textile in clothes [9]
 Power transfer through ultrasound waves [10]
 Patches for “2nd skin” applications [11]
 Air flow harvesting [12]

• Typ. tens of nJ to a few µJ / mech. cycle / cm²

• Applications: smart textile, energy transfer to 
implant…
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Nanowire Light Emitting Diodes

Maria Tchernycheva (C2N) • Integration of Thermoelectric micro‐nano devices 

• Photovoltaics devices 

• Thermophotovoltaic devices (with nanoscale gaps) 

• Piezoelectric Kinetic Energy Harvesters 

• Electrostatic Kinetic Energy Harvesters 

• Nano LED 

• Adiabatic logic with micro/nano devices 

• Piezoelectric energy converters 

• Metrology for thermal properties of thermoelectric 
micro/nano devices 

• Metrology & Standardization for kinetic energy harvesters
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• Efficient strain relaxation – dislocation-free nanocrystals, higher QE
• Growth on low-cost substrates 

 Dislocation free highly 
mismatched active region 
(e.g. In-rich InGaN/GaN QDiscs
to cover the green gap )

 Increase of the emitting surface -
decrease of current density –
reduction of droop

 Lateral surface is non-polar – no field

Core/shell
InGaN NW LED

[6]

• Strong effort on NW LEDs to compete with planar LEDs
• Small size – mechanical flexibility. Good for alternative applications : flexible light sources

White NW LEDs

GLO‐AB

[1]

Axial LEDs Radial LEDs

Potential benefits of nanowire-based LEDs
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Flexible blue, green and white light sources and high brightness displays 
using nanowire/polymer membranes

• Combine crystalline III-V materials with flexible polymers
Flexibility of polymers and high efficiency and long lifetime of crystalline materials
Modularity – combination of “incompatible” materials

Flexible nanowire LEDs
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Adiabatic logic with micro/nano 
devices

Gaël Pillonnet (CEA)
• Integration of Thermoelectric micro‐nano devices 

• Photovoltaics devices 

• Thermophotovoltaic devices (with nanoscale gaps) 

• Piezoelectric Kinetic Energy Harvesters 

• Electrostatic Kinetic Energy Harvesters 

• Nano LED 

• Adiabatic logic with micro/nano devices 

• Piezoelectric energy converters 

• Metrology for thermal properties of thermoelectric 
micro/nano devices 

• Metrology & Standardization for kinetic energy harvesters
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• Fundamental limitation of FET approaches [1]
 Ultimate power consumption (~kBT) is not achievable using nano-scale 

transistors [2,9]

• Adiabatic Operations
• Reduce current flows and recycle energy by reducing the speed [3]
 Enable near zero-power operations from energy-reversible micro-
scale devices

• Candidate to be a « Landauer switch » :
MEMS w/ or w/o mechanical/electrical contact [4,5,8]
Solid state devices: Josephson [6], tunnel junction [7]

• Applications
Processing in IoT devices

+ fundamental : explore the minimal energy floor of Boolean operations

Devices for near zero-power Boolean operations

[7]

[6]

[5]
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Piezoelectric energy converters

Gaël Pillonnet (CEA)
Dejan Vasic (SATIE)

• Integration of Thermoelectric micro‐nano devices 

• Photovoltaics devices 

• Thermophotovoltaic devices (with nanoscale gaps) 

• Piezoelectric Kinetic Energy Harvesters 

• Electrostatic Kinetic Energy Harvesters 

• Nano LED 

• Adiabatic logic with micro/nano devices 

• Piezoelectric energy converters 

• Metrology for thermal properties of thermoelectric 
micro/nano devices 

• Metrology & Standardization for kinetic energy harvesters
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• Motivation:
1/ Magnetic devices have a sub-linear scaling-law in miniaturization [1,2]
2/ Piezoelectric resonators are inductive behavior and can be scaled down without penalty [3]
Revival piezo MEMS devices for power conversion

• Ideal candidate [4]: 
high coupling (k2>10%), 
high quality (Q>1000), 
MHz frequency (>> harvesting)

• State of art: 
macro-scale PZT [5], 
LnO MEMS [6]

• Applications
DC-DC converters
1’s Watt @MHz with cm2-scale devices could be achieved

Piezo Resonators for Power Converters

[6]
[7]



6/17/2021

Working Group 6 : Micro Nano Devices 35

• Motivations:
1/ Need to supply micro-systems @high voltage and @low-power
2/ Find a alternative to bulky magnetic transformers with poor scale-down property
3/ Piezo Devices is almost a planar devices
 Piezo devices are a key enabler to achieve low form factor and scale down the size vs power 
requirements

• SoA candidate: 
PZT transformer [8], 
AlN [9], 
Coreless [10]

• Applications:
DC-DC converter from µW to mW, MHz, 100’s V

Micro Transformers for Power Converters

[8]

[10]

[9]
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Metrology for thermal properties of 
thermoelectric micro/nano devices

Nolwenn Fleurence (LNE)
• Integration of Thermoelectric micro‐nano devices 

• Photovoltaics devices 

• Thermophotovoltaic devices (with nanoscale gaps) 

• Piezoelectric Kinetic Energy Harvesters 

• Electrostatic Kinetic Energy Harvesters 

• Nano LED 

• Adiabatic logic with micro/nano devices 

• Piezoelectric energy converters 

• Metrology for thermal properties of thermoelectric 
micro/nano devices 

• Metrology & Standardization for kinetic energy harvesters
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Reliability, reproducibility and comparability

Challenge: Measurement techniques at macroscale not suitable 
for nanoscales!

What is metrology and why is it useful ?

Q = ({Q} ± {u}) [Q]

physical 
value

number

uncertainty

unity
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• Dimensionless figure of merit:

𝑍𝑇 ൌ
𝑆². 𝜎

𝑘
𝑇

Suitable for material characterization

Combined van der Pauw Approach 
Uncertainty: 5 to 10% [2]

• Certified materials: 

VAMAS TWA 38 Thermoelectric Materials

SRM® 3451

SRM® 3452

Need: characterise thermoelectric conversion efficiency

[1]

[2]

[3]
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• At device level:

Influence of design, heat losses, thermal boundary 
resistances

• Techniques:

modulated photothermal radiometry

u = 10% for λ < 5W/m‐1.K‐1

• Applications: thin films structured TE devices

scanning thermal microscopy (for λ<10W/(m‐1.K‐1))

u: currently 20% in best case, need to be improve

• Applications: nanostructured TE devices

Need: characterise thermoelectric conversion efficiency
[4]

[5]

©KNT
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Metrology & Standardization for kinetic 
energy harvesters

Elie Lefeuvre (C2N)
Mickaël Lallart (LGEF)
Philippe Basset (ESYCOM)
Guylaine Poulin-Vittrant (GREMAN)

• Integration of Thermoelectric micro‐nano devices 

• Photovoltaics devices 

• Thermophotovoltaic devices (with nanoscale gaps) 

• Piezoelectric Kinetic Energy Harvesters 

• Electrostatic Kinetic Energy Harvesters 

• Nano LED 

• Adiabatic logic with micro/nano devices 

• Piezoelectric energy converters 

• Metrology for thermal properties of thermoelectric 
micro/nano devices 

• Metrology & Standardization for kinetic energy harvesters
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Characteristics of nanodevices 

• Current works use various "standards"

for performance evaluation

• Trend to “oversell” the performances 

of (nano)materials & devices:
Peak Power (instead of average power)

Or even worse:
Power = Vocpeak x Iscpeak

• Need for common definitions, unified 
methods and protocols

Metrology – Standardization: Mechanical EH

[6]
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International Standard: IEC 62830
https://www.iec.ch/ [1]

• Part-1: Vibration based piezoelectric energy harvesting

• Part-2: Thermo power based thermoelectric energy harvesting

• Part-3: Vibration based electromagnetic energy harvesting

• Part-4: Test and evaluation methods for flexible piezoelectric energy harvesting devices

• Part-5: Test method for measuring generated power from flexible thermoelectric devices

• Part-6: Test and evaluation methods for vertical contact mode triboelectric energy 
harvesting devices

• Part-7: Linear sliding mode triboelectric energy harvesting

Metrology – Standardization: Mechanical EH
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International Standard for Nanomaterials?

• Thin films:

• IEC 62830-2: thermoelectric thin film EH devices

• IEC 62047-30: MEMS piezoelectric thin film EH devices

• Standardized Metrology for Piezoelectric Nanowires? Not yet

Metrology – Standardization: Mechanical EH

[7]
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Need for “fair” characterization methods for 
nanomaterials/nanodevices used by all

• At the material level

 figures of merit (Priya [2])

 energy density J/m3, J/kg... and test conditions

• At the device/system level

 figures of merit (Mitcheson [3], Badel [4], Zi [5])

 energy per mechanical cycle, per m3 of "real volume"...

Metrology – Standardization : Mechanical EH

[5]
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Metrology – Standardization : Mechanical EH

• Differentiating between
 Inertial

 Need a feedback control, at least for 
frequency sweep

 Frequency-sweep back-and forth
 Definition of bandwidth

 Normal excitation
 Need a force sensor

 Direct friction
 How evaluate the mechanical input?

• Electrostatic KEH
 Normalization from QV-max 

for given Cmax, Cmin & Vbias

 Breakdown voltage
 DC output voltage

• Output power 
 in “steady-state” 

(at optimum operating point) 
 or from scratch 

(all cap/induct discharged)?

Working Group 6 : Micro Nano Devices

Conclusion

• Presentation far from being exhaustive

• In particular, we are looking for contributions for electromagnetic 
kinetic energy harvesters

• Metrology could be a workshop by itself

• Please join us if you want to contribute
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Thank you for your attention!

Participants: 
• Gustavo Ardila (IMEP‐LAHC)
• Adrien Badel (SYMME)
• Maria Chernycheva (C2N)
• Dimitri Galayko (LIP6)
• Noëlle Gogneau (C2N)
• Jean‐Paul Kleider (GEEPS)
• Mickaël Lallart (LGEF)
• Elie Lefeuvre (C2N)
• Gaël Pillonnet (CEA)

Animateurs: 
• Philippe Basset (ESYCOM)
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