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@NAM& - Outline.

& Radiative cooling and heating
& Principles

& Applications
@ Overview @ Daytime radiative cooling

® Scaling, power, trends, 3D integration, steady-state / transient @ Nighttime radiative cooling
i i @ Radiative condensers (black silicon)
@ Thermal management for Integrated Circuits (1C)

& Relevant parameters

@ Thermal interface resistance

GDR MNAnoMaterials for Energy applications

& Challenges and perspectives

@ Overview

& Techniques @ Historic breakthroughs in electronics

@Passive: Thermal interface materials @ A variety of thermal analogues to the electrical

components
o @ Analogies between linear electrical and thermal

& Applications | _ components

@ Phase Change Materials devices & Thermal rectifiers and thermal diodes

@ Optical components ® Thermal regulators and thermal switches
& Challenges and perspectives @® Thermal transistors

& Thermal logical gates and memories
& Thermal memristors

& Active control of heat flux

& How about the quantum regime?

& Challenges and perspectives
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- Overview.

& Trends

@ From “more Moore” to “system Moore”
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& Trends
@ Flexible electronics
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#® Relevant scales

2m
10cm ¢
2cm Integrated
Circuit
0.5mm +

100 pm Component

2nm

Heat sinks

Thermal Interface Materials
Integrated Peltier Cooling ?
Thermal floor planning

Through Silicon Vias
Routing strategies

Quiality of interfaces

-> Thermal Interface
Resistance

Knowledge of materials
-> Thermal Conductivity

The 2 nm transistor in nanosheet structure.

(Credit: IEM)

(2021)

J.-F. Robillard

@ Relevant parameters

At component scale, knowledge of
Thermal conductivity (TC)

Thermal boundary resistance (TBR)
becomes critical for IC design...

& Types of management

Active Passive
Peltier Heat sinks

Forced convection Thermal floor planning
Vias-Routing

& Objectives of management

Component reliability
Heat spreading (data, com, memories...)

Component performance/efficiency
Noise reduction (imagers, detectors)

Component operation

« Heat as a resource »
Non-volatile memories (PCM)
Thermo-optical modulation
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@ Thermal interface resistance / conductance

GDR NAnoMaterials for Energy applications
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* Hopkins, P. E. (2013). “Thermal transport across solid interfaces with nanoscale imperfections. effects of roughness, disorder, dislocations, and bonding on
thermal boundary conductance.” International Scholarly Research Notices, 201 3.

» Monachon, C. et al. , Annual Review of Materials Research, 46, 433-463.

« Maite Blanck et al, J. Appl. Phys. 125, 095302 (2019)

» A. Giri, and P. E. Hopkins, Advanced Functional Materials, 30(8), 1903857 (2020)
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Ty @ Thermal interface resistance / conductance

T3dependence at low T
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Thermal boundary conductance, hx (MWm 2K ')
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Hopkins, P. E. (2013). “Thermal transport across solid interfaces with nanoscale imperfections: effects of roughness,
disorder, dislocations, and bonding on thermal boundary conductance.” International Scholarly Research Notices, 2013.

Thermal Boundary Conductance, hK (MW m2 K")
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@ Thermal interface resistance / conductance
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@ Thermal interface resistance / conductance Multiscale thermal characterization techniques

GDRE NAncMaterials for Energy spplications
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Thermophysical characterisation of VO, thin films hysteresis
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@ Applications @ Phase Change Materials devices

Electronic contribution in heat transfer at metal-semiconductor and metal silicide-
semiconductor interfaces
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G. Hamaoui et al. Scientific reports, 8, 1-9 (2018).
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Attempts to integrate membrane-like or NW TE Converters lead to

new thermal management issues.

Mainly related to the vertical to horizontal heat flux redirection

And air exchange.
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& Applications @ Thermoelectric Energy harvesting

c-Si Membranes

TEG footprint
800%300pm?

300 nm

M. Haras et al. IEEE Electron Device Letters, 37, 1358 (2016)
T. M. Bah et al. (in prep.)
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K. Ziouche et al. Journal Of Microelectromechanical
Systems, 26, 45 (2017)

J.-F. Robillard

Air flow

1001 EMT = 20.00 kv

WD =15.6 mm

Ve

D. Tainoff etal . Nano Energy 57 804-810 (2019)
c-Si NW

D. Davila et al. Nano Energy 1, 812 (2012)
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& Applications @ Phase Change Materials devices

Transition between amorphous and crystalline phase
Phase transition — current induced Joule heating
Information stored in the resistance of the alloy
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Typical thicknesses of pelec layers have a thermal resistance
equivalent to TBR. TBR can be a major contribution to the
total thermal resistance.
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IBM Research / Memory Technologies
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For IR (905 nm)
SiN waveguides
Thermo-optical modulation

Challenge=go to high frequencies (10-50kHz)

Need for thermal optimization

Thenmeali\enacemeniaiornl C

Splitter
array

Hundreds of mi?rons

J.-F. Robillard
S. Monfray

& Applications @ LIDAR: Beam steering with thermo-optical waveguides

@ Detection and imaging : Single Photon Avalanche Diodes

1. avalanche

"Diode I-V Response Curve

Si 905 nm
Ge 1300 nm

—

bq "1 SiN waveguides
T .‘¢\\\ y\m\) T e
® 20 -
“ * - \\) Waveguide M
“ 1 gratings TN I NSRS Heaters
"5‘\ T R LR O R oand
\/ ’\”\) L O O L E R T T LT angIE-tuning
Row . A
phase Rabinovich et al. , Opt. Eng. 55, 111603 (2016)
shifters

TmA,
1100 K
TmA4 1HA} 18100m_,
k| 1nA| ",’155—0:“11)/

Dark Count Rate
* Noise Eq. Power

1

Can be highly improved
through local cooling

o 10 20 30 40
Reverse voltage (V)

R. E. Warbuton et al. , Trans. on Electron devices, 60, 3807 (2013)
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& Techniques o Passive: Thermal interface materials

GDR MNAnoMaterials for Energy applications

TIMs for 5G/Al/Semiconductors
Electrically conductive adhesives - alternative to solders (electronic packaging)
Elastomer socket powder — semiconductor testing
Conductive powder - touch screen panels

Ag Au

”Ni + Ag + Au
High thermal ceramic paste for spray — electrical insulator / spray
High Thermal Ag Sintering Paste — high thermal conductivity

EMC

Thermal conductivity (W/mK)

Ultrahigh phonon conductivity materials

1000

1000k

100 £

10 |

0.1

Graphene/nanotube

Polymers

Ultrahigh thermal
conductivity materials

0000 W BAs®

@
o SiCAg CuBN - BpI6]

Common semiconductors,
ceramics, metals

Primarily Synthetic diamond, BN, SiC, Ag, Al, and Cu

Coefficient of thermal expansion
should match the heat source

acoustic phonon bunching
large acoustic-optical gaps

(g

Thermal conductivity (W/mK)

1400

e.g., BP, BAs

g

g

g

g

5 ® BAs

300 350 400 450 500 550 600
Temperature (K)

J. Maire
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& Techniques

@ Passive: Thermal interface materials

2D Materials for thermal management
Fillers for Polymer-Based TIMs

Ultrahigh thermal conductivity of graphene (semi-metal)
* high conductivity of h-BN (insulator)

a AlLLO b BN nanosheet ¢ Graphene
LY. NN N %

5 pm

~d_ Carbon nanotube e A - f Hybrid filler

high k with minimized filler loading

» graphene flakes with Ag particles
* h-BN flakes with SiC nanowires
* Ag flakes with CNTs

ThermalianagementaforlC

Direct Use for Thermal Management

2D Materials and 3D assembilies

Compression 3D foam D

B

Compression

3D-Interconnected Graphene and H-BN Macroforms
Graphene and h-BN Thin Films for Heat Spreaders
Graphene Fibers for Thermal Management

J. Maire
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& Challenges and perspectives

@ Challenges

Heterogeneity : increased functionnal density leads to more materials and complex structures
Mechanical flexibility : can lead to extra thermal resistance due to transfer bonding

Metrology : TBR in realistic devices stacks

Modeling : Taking into account non-Fourier conduction in complex structures

Introduction of nanostructures in devices (NW, membranes) : Leads to new challenges in thermal design

Paradoxically, high thermal conductivity nanostructures (carbon NW, graphene) can lead to degraded thermal management

@ Perspectives

Very high phonon conductivity materials
Integrated Peltier cooling

« Heat as a resource » devices (PCRam, PC Switches)

15
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About this workshop: Thanks to all contributors :

* \ery rich contents within the GDR and beyond
» We realized that some topics are not covered at all -> Please join ! Younes Ezzahri
» This is quite transversal topic and related to other Workshops. Jean-Francois Robillard
Philippe Ben-Abdallah
Difficulties: Jerémie Drévillon
» Terminology and scope definition Nicolas Horny
Karl Joulain

Jerémie Maire
Stéphane Monfray
Elyes Nefzaoui
Stéphane Pailhes

. R imol
The full presentation, oberto Simola

including Radiative Cooling and Thermotronics,
will be presented in next session, October.

16
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» Using the cold darkness of space

> Atmospheric transmittance
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. Nanophotonic approach

. Scalable approach : paint / polymer films

& Different approaches

@ Nanophotonic approach: thin films stack

(2) (b) ©
1 1
|
z
S 075 075
g
e 2
s 2 55
688 nm BES0 1 73 0m > ! AM1.5 solar
7 025 SPectum 025
. I e
S e
i ' ol 0
+, NSO ¢, ., 0305 1 1.5 2 25 25 5 8 10 13
b Wavelength (pm) Wavelength (um)
Fig. 13. Scanning electron mi and spectral ions of a photonic radiator (multilayer film) reported in Ref. [13].

AP. Raman et al., Nature, 515, 540 (2014).

@ Metamaterials with patterned surface
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Emissivity/Absorptivity
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E. Rephaeli et al., Nano Lett, 13, 1457 (2013).
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M. M. Hossain et al., Adv. Opt. Mater, (2015).
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Si0, layers as a promising material

Surface gratings to enhance emission
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2D gratings enhance the emissivity for both
polarizations, leading to large emission in the

infrared

Spectral hemispherical emissivity
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« Large emissivity in the transparency
regions of earth atmosphere

* Large reflectivity under the solar
spectrum

Dips in emission un the infrared, but

emission can be enhanced with gratings
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GDR Rinokaterisls for Enersy applicstions @& Different approaches @ Polymer nanofibers
@ Nano/micro porous polymer = = Y mmen i

Reflected
Sunlight

H. Kim e al., ACS Applied Materials &
Interfaces, 12, 43553 (2020).

nanoPAN

D Size Distribution

J. Mandal et al., Science 362, 6412 (2018).
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Y. Peng et al, Nature Sustainability, 1, 105 (2018).

@ Multiple potential applications: daytime
and nighttime cooling

aaaaaaaaaaa
= = Cooling Assembly

Radiative
Cooling PJ
Power

ey
Z. ZHOU et al., Optics Express, 27, A404 (2019). ek 5 Reflection
@ Enhancing thermoelectric generation
A. P.Raman et al., Joule, 3, 1 (2019).
Generating light from darkness!

PV Cell

@ Start-UP
e el | 3 ‘ » Sky-cool




NAME Radiatiye)copling % Drévillon

GDR NAnoMeterisls for Energy applications - Cha”enges and perspectives

@ Challenges

> Nanofabrication |::> > Transition to the industrial scale.

> Size control during elaboration (e.g
electrospinning of different materials,...

> Nano/micro porous structure and nanofibers

» QOutdoor use: UV radiation / humidity / dust,...

> More precise models for the transparency of the atmosphere and the radiative flux from the environment.

@ Perspectives

> Numerous proofs of concept: optimization and upscaling.

> More generally: Optimization of the use of the cold darkness space!
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@ Diode

F. Braun + _H_ —

1874 Forward bias

» Perfect rectification of current Reverse hias

& A variety of thermal analogues
N. A. Roberts and D. G. Walker, IJTS, 50, 648 (2011).
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Fig. 1. Number of publications on thermal rectification per decade since 1936.

M. Y. Wong, C. Y. Tso, T. C. Ho and H. H. Lee,
164, 120607 (2021).

P. Ben-Abdallah

Y. Ezzahri
Istorical breakthroughs in electronics K. Joulain
I J. Bardeen, W. Brattain, =
W. Shockley
" 1947-1951
Reverse bias | Forward has
V—

> Electrical switching
> Modulation

to the electronic components o
> Current amplification

”1936: First experimental observation of

thermal rectification”
C. Starr, « The copper oxide rectifier », Journal of
Applied Physics, 7, 15-19 (1936).
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Fig. 2. Number of publications of thermal diode studies from the 1900s to present.
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‘ Con d u Ctive reg i me (a) Forward thermal bias (b) Reverse thermal hias

B. Li et al., PRL, 93, 184301 (2004). 156K 7 =204 K

& Different mechanisms
> Conductive regime: Asymmetric mismatch in phonon spectra (Nonlinear lattice coupled with harmonic spring) / Asymmetric
Kaptiza resistance / Asymmetric temperature dependent thermal conductivity / Metal-insulator transition (hysteretic thermal

behavior of Phase transition materials PTM)— Phononics.

» Radiative regime: Resonance modes and broadband (selective emitters, superconductors and PTM) — Photonics.
> Convective regime also.

& Experiment

¢ from Lefi o Right O from Right to Left

& Theory

Segment | Segment 2 Segment | Sezment 2

C. W. Chang et al., Science, 314, 1121 (2006).

)

=3
=3

\
i
8 g -
03 — (f731,f:732)= Xtmme {(/;r‘ (a)
<-Dashed: (3,-3) o _H_
AppIo: Temperature, T(K) ; . . . -
6 / 280 300 320 340 360 380 4 l)] T 1 > 1 L
=] .= E -

s O:E L = I G N R & S e - -
= Py = o ] p
g - § 6 £ = 7555 Low heat flow Boron -
(b) © . BS | o 5 = g 1 L)
el T<T, c e segment @ 4 5‘ o E ~ / - - (b) W After mass-loading A>0
% ;f;‘fzgg;g‘n . % right segment E 015 %‘ 5] % E 0 /i//”r/{{ ) (a)h_/ nltl’lde (B N) 30k A After mass-loading A<Q
g g 8 s s £ : _ -l
: 5 £l E : 3 [P0 KW nantube
H H 3 = = i —— p=0.27 mm’KW~! -
g g % R i r 1 g
§4' £ ~ H =05 mm’Kw-! = 25
frequency frequency b (Thermally-matched legs, p=1) é : :’; 0 3695K! 77T Eq.(12) g
) ‘ ‘ ‘ £ ‘ ‘ .
@ I ; re 0 1 - 2 >0 s 0 3a5 0 30 S 340 360 /0 400 420 P -
T=Ty(1+4) / Dimensionless Thermal Bias, A = I(I;” 17‘-’/' ) Temperature, T (K) Temperature, 7, (K) 201 i '0
1ol TET () : A i Uy +ie stine A<
; / .
cof wIRE A J. Ordonez-Miranda et al., JAP, 123, 085102 (2018). 15 20
e D A e ATy (K)
Sof aee AT C. Dames, JHT, 131, 061301 (2009).
A —
of g-e :.:.j‘ngi.f!,! ,,,,,,
A a_u : - N - R
A Limitations:
06 -04 -02 00 02 04 08 —_—

] « Kapitza resistance
|Op—Dp| | Dp—Dg| |[Pp—Dg| ® * SDGEd of phonons
R = S on o QF,RR ot on * Phonon-phonon interactions  with  strong
temperature gradients ’3




P. Ben-Abdallah

@ NAME Y. Ezzahri

G | ke i g e o @® Thermal rectifiers and thermal diodes & Experiment K. Joulain
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@ Conductive regime @ Radiative regime
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& Active control of heat flux @ Heat splitting

P. Ben-Abdallah
Y. Ezzahri
K. Joulain

@ Shuttling and ratcheting T,=273K T,=273K
ol EF2=0.1eV EF3_0 8eV
FK Lattice Harmonic Lattice J(t: X1 Xn) ) P. Ben-Abdallah et al. APL, 107,
'““3\@{ W”\W@MMTR _ 107k | 053109 (2015).
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@ Mechanical control

& How about the quantum regime?
MEMS/NEMS

@ Thermal diode

Gratings rotation
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| <—
Qo Proa Tamp + AT,

02

T. Werlang et al., PRE, 89, 062109 (2014).

Piezo-actuator

+
Stepper motor

Vieat (Vi)

guantum dots

R. St. Gelais et al., Nature S.-A. Biehs et al. APL, 98,

@ Thermal transistor
K. Joulain et al., PRL, 116, 200601 (2016).

> Using Superconductors

Nanon 11, 515 (2016).

243102 (2011).
D. Thompson et al.,

Nat. Nano, 15, 99 (2020).

> Using Qubit-Qutrit coupllng
B. Guo et al., PRE, 98, 022118 (2018).

Me
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> Using Qubits

M. Majland et al., PRB 101, 184510 (2020). /W
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Y. Zhang et al., EPL, 122, 17002 (2018).
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5y epp & Challenges and perspectives & Two dimensional materials
@ Challenges
> The operating time scale in nanostructures
(~ms to s) is limited by the thermal inertia. |:>
@ Perspectives > Treinsition metal dichalcogenide =
» Extension of the developed concepts to the conductive regime monolayers could allow to design thermal
using Phase Transition Materials (e.g VO,). transistor operating at submicrosecond scale
> Exploring and deepening the analysis of the dynamical regime. @ Systems far from equilibrium
> Towards smart hybrid circuits and structures optimizing heat —, d

i ———_____Imal

-
T

management and electronic operation ... > Electrons and phonons at different
temperatures.
> Heat flux control at pico and

subpicosecond scale...

=
=]
T

> Towards a full heat information treatment structure... ;
& Memristive behavior R. Yu, etal. Nat Commun 8, 2 (2017). —_—
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P. Ben-Abdallah, AIP Advances

7, 065002 (2017). .
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@ Co-generation #

Solar Radiation
S
i/ /
entrator £

S/
Photovoltaic Panel
e Modul

PV Cell

Air(heat sink) =

PV Cell
HTF
TEG

———
[0 0 OO] urr
[N NI e

Mirror

S. S. Indira et al., Solar Energy, 201, 122 2020.

PV Cell @
TEG

P. Ben-Abdallah
Y. Ezzahri
K. Joulain

. e i 1—|——|—|N R M. Benghanem et al., Renewable
@ Cooling o U. | | m@ Energy, 89, 51 2016.

Dussipater of the heat (Heat sink)

a Electrocaloric (EC) refrigeration
E field don 2

& Hybrid Thermotronics applications and beyond! &l _3___7__;l ‘
@ Solid-state refrigeration using thermal diodes 8 e

Tl, -l

N 1
47F field off
Entropy S
G. Wehmeyer, T. Yabuki, C. Monachon, J. Wu and C. Dames, b Implementation
Applied Physics Reviews, 4, 041304 (2017). Thermal Diodes
- - - - —
@ Enhancing thermoelectric refrigeration % _—
Thermal Diode i
Thermal circuit
_Q’DI TEC D'
T, U. Ghoshal and A. Guha, JEM, 38, 1148 20009. T Cf'; T

m
T
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