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Water electrolysis Hz @ Université
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Water electrolysis vs. electroreforming of oxygenated compounds Hz @ Université

dePoitiers

U® =
n AH*0 Ah+0 AGHO cell

Compound H2 4 9 4 + AG*9/nF

/ mole / kJ mol / kJ mol H, / kJ mol (V vs. SHE)
H,O 1 + 286 + 286 + 237 1.23
HCOOH 1 + 32 + 32 - 33 -0.17
CH;0OH + 131.2 + 44 + 9.3 0.016
CHon'
CH,OH + 240 + 48 + 17.2 0.018
1-C5;H,0H 9 + 545 + 61 + 170 0.098
DMM
CH,(OCH,), + 340.6 + 42.6 - 5.6 - 0.004

1-C,H,OH + 754 + 205 0.177

C. Lamy, C. Coutanceau, S. Baranton, Production of clean hydrogen by electrochemical reforming of oxygenated organic compounds, in “Hydrogen Energy and Fuel Cells Primers”, B. Pollet (Ed.),
Elsevier, Amsterdam, 2020. ISBN: 978-0-12-821500-5.
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Water electrolysis vs. electroreforming of oxygenated compounds H @ Unmmtc

Poitiers
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Co-production of high purity H,

and value-added products _
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S. Baranton, C. Coutanceau,, Nickel cobalt hydroxide nanoflakes as catalysts for the hydrogen
evolution reaction, Appl. Catal. B: environmental 136-137 (2013) 1-8. -10 |

Y. X. Chen, A. Lavacchi, H. A. Miller, M. Bevilacqua, J. Filippi, M. Innocenti, A. Marchionni,

W. Oberhauser, L. Wang, F. Vizza, Nanotechnology Makes Biomass Electrolysis More Energy W —_ 1 2 — 2 4 kWh / S m 3
Efficient than Water Electrolysis., Nature Comm. 5 (2014) e - . .
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Electroreforming of oxygenated compounds
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Electrolysis cell voltage versus current density U_(j)
for the oxidation in proton exchange membrane

electrolysis cells (PEMEC)

(a) 2 M MeOH (anode PtRu/C) at 90°C

Hu Z, Wu M, Wei Z, Songa S, Shen PK. Pt-WC/C as a cathode electrocatalyst for hydrogen production by methanol

electrolysis. J Power Sources 166 (2007) 458-461.

(b) 2 M EtOH (cathode Pt/C) at 20°C.

Lamy C, Jaubert T, Baranton S, Coutanceau C. Clean hydrogen generation through the electrocatalytic oxidation of
ethanol in a proton exchange membrane electrolysis cell (PEMEC). Effect of the nature and structure of the catalytic

anode. J Power Sources 245 (2014) 927-936.

C4LMP
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Electroreforming of oxygenated compounds L1 Universitc

Reactions in a Direct Alcohol Proton Exchange Membrane Electrolysis Cell

Méthanol: CH;,OH + H,O0 = CO, + 3 H,

C. Coutanceau, S. Baranton. Electrochemical conversion of alcohols for hydrogen production: a short overview. WIREs Energy Environ 2016. doi: 10.1002/wene.193

Catalyst AL AA Co, Ca'ﬁ“(l‘?ted
€

Ueen /' V 0.92-0.97

Pt/C 35
Chemical yield / mol % 46 42 12
Ucen /' V 0.92 -0.97

PtooSno1/ C 4.6
Chemical yield / mol % 31 41 28
Ueen /' V 0.80-0.96

Pto.865N0.1RUg .04 / C 45
Chemical yield / mol % 39 32 29
C,HOH + H,0 — CH,COOH + 2 H,

~MP
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Electroreforming of oxygenated compounds L1 Universitc

Reactions in a Direct Alcohol Proton Exchange Membrane Electrolysis Cell

Méthanol: CH;OH +

Ethanol:  CH5-CH,0H +@" 2C0O,+6H, Activation of water at
CHy-CH,OH € H,0 €H7COH + 2 H, U, <<<1.23V

C. Coutanceau, S. Baranton. Electrochemical conversion of alcohols for hydrogen production: a short overview. WIREs Energy Environ 2016. doi: 10.1002/wene.193

Catalyst AL AA Co, Ca'ﬁ“(l‘;"ted
€

Ucell IV 0.92 -0.97

Pt/C 35
Chemical yield / mol % 46 42 12
Ucen /' V 0.92 -0.97

PtooSno1/ C 4.6
Chemical yield / mol % 31 41 28
UceII IV 0.80-0.96

Pto.865N0.1RUg .04 / C 45
Chemical yield / mol % 39 32 29
C,HOH + H,0 — CH,COOH + 2 H,

~MP
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Electroreforming of oxygenated compounds from biomass H Université
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Electroreforming of oxygenated compounds from biomass Hz @ Université

Reaction medium

- Molecules such as polyols and sugars more electroreactive in alkaline media
e Base-catalyzed reaction favoured

e possibility of using non noble metals

- C-C bond cleavage more difficult in alkaline media at low potentials
e Enhancement of the selectivity

e Co-production of hydrogen and high value-added compounds

4MP
des Milieux et Matériaux de Poifiers
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Electroreforming of oxygenated compounds from biomass Hz

network on Hydrogen energy

Electrocatalytic materials
PtBi materials known to be catalytically very active towards biomass conversion for a long time

- T. Mallat, A. Baiker, Oxidation of alcohols with molecular oxygen on platinum metal catalysts in aqueous solutions . Catal. Today 19 (1994) 247 — 284
- P. Gallezot, Selective oxidation with air on metal catalysts. Catal. Today 37 (1997) 405 —418

PtBi catalysts are also very electroactive materials for biomass conversion

- M. Simdes, S. Baranton, C. Coutanceau. Enhancement of catalytic properties for glycerol electrooxidation on Pt and Pd nanoparticles induced by Bi surface modification . Applied Catalysis B:

Environmental 110 (2011) 40 — 49
- J. Cobos-Gonzalez, S. Baranton, C. Coutanceau . Development of Bi-Modified PtPd Nanocatalysts for the Electrochemical Reforming of Polyols into Hydrogen and Value-Added Chemicals

ChemElectroChem 3 (2016) 1694-1704
-N. Neha, T. rafaideen, R. B. S. Kouamé, S. Baranton, C. Coutanceau , Remarkably Efficient Carbon-Supported Nanostructured Platinum-Bismuth Catalysts for the Selective Electrooxidation of Glucose and

Methyl-Glucoside. Electrocatalysis 12 (2021) 1-14.

6 12
Pt/C Pt/C

s Pty oBig . /C 10} Pty oBig 4 /C
o Pt sBig ,/C Pty sBig.,/C
£ 4
o -1 8 L
é
= 2 6r

2 g_( 4t

2 L
0 T T T T T T T O L n 1 1 N 1 L 1
0.0 0:2 0.4 0.6 0.8 1.0 12 0.0 0.2 0.4 0.6 0.8 1.0 1.2
E vs RHE (V)
E vs RHE (V)

0.1 M glycerol electrooxidation in 0.1 M NaOH, 20 °C, scan rate 0,005 V s

«MP
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0.1 M glucose electrooxidation in 0.1 M NaOH, 20 °C, scan rate 0,005 V s!
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Electroreforming of oxygenated compounds from biomass Hz

Sythesis of electrocatalytic materials

“Water in oil” microemulsion synthesis : 40 Wt% M / C

Metallic
Nanoparticle

AN

H,O + e
metallic salts FH__\'\-\_LH ,_,—':\:} Nsil?il;“ < e r’f_\_:'b C support
Y e
0 S o ARk,
Brij® 30 "’J;\-heptane Brij® 30 n-heptane

e Easy and rapid to implement

e Formation of nanoparticules from a wide range of metal salts

e Easy cleaning step

ICLMP
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Electroreforming of oxygenated compounds from biomass

Characterization of electrocatalytic materials

TEM DRX, AAS, ICP-OES, XPS:

| ptc Pt,Bi,/C PtsBi,/C
Comp. ICP- 100 Pt Bi Pt Bi
OES (at% 92 8 84 16
Comp. AAS 100 Pt Bi Pt Bi
at% 88.2 11.8 78.2 21.8
[ d(nm)  [BEN:) 4.7 4.7
\ 3.5 4.3 B
NGRS 0.3916 0.3919 0.3926
06 Pt/C s Pt0: 79 Biorar: 21 Pto: 72 Bitot%,: 28
] . . Bi® 9
ENOl)8 72 Bi(OH),: 34
0.4+ 0.44 Bl(OH) 3. 22 . .
g 5 B0 6 Bi(OH) 5: 51
g, 0.3 go,g, 120,: Bizo ‘6
& 0.2 3 0.2+
0.1 0.1
0.0+ 0.0~
1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10
Size (nm) Size(nm)
XRD PUC
Pto oBig.1/C
PtOBBIC 2/C
T o SO
- M. Simdes, S. Baranton, C. Coutanceau. Enhancement of catalytic properties for glycerol electrooxidation on Pt and Pd
Rt nanoparticles induced by Bi surface modification . Applied Catalysis B: Environmental 110 (2011) 40 — 49
- B. S. R. Kouamé, S. Baranton, C. Canaff, P. Brault, W. Chamorro-Coral, A. Caillard, K. De Oliveira Vigier, C. Coutanceau.
Insights on the unique electrocatalytic behavior of PtBi/C materials. Electrochim. Acta 329 (2020) 135161.
: ¥ \_—4’*—/‘/\——
20 40 60 80 100 120 140 )
26 (o) | | “ L M p
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Electroreforming of oxygenated compounds from biomass H

The r nme earch
n Hy

Molecular dynamics For more information: pascal.brault@univ-orleans.fr
GREMI

HV cross shaped pump
deposition chamber

Conditions for MDs calculation:

- Growth of Pt,Bisy,., nanoparticles (n < 500) in GAS configuration

Ar inpur
H
- To mimic the synthesis by wet chemistry
- T maintained around 300 K (with low fluctuations) using a
Berendsen thermostat.

Gas aggregation source
with a PtBi target

target

- The energy of clusters bond formation after collisions is
transported and dissipated by the Ar atoms acting as the
solvent in the case of the synthesis of nanoparticles by wet

chemistry.
1.5
— Vopt(r)
1 VB|B|(r)
— Vpegi(1)
= - Pt-Bi bond strength > Pt-Pt and Bi-Bi bond strengths
< 05 - Pt-Bi equilibrium distance is larger than the Pt-Pt distance
Al
=
=> Bi should be located on the outermost surface
0 .
: => strong electronic interaction between Pt and Bi
_0.5 L L L 1 ) ) ) o
B. S. R. Kouamé, S. Baranton, C. Canaff, P. Brault, W. Chamorro-Coral, A. Caillard, K. De Oliveira Vigier, C. Coutanceau.
2 3 4 3 6 7 Insights on the unique electrocatalytic behavior of PtBi/C materials. Electrochim. Acta 329 (2020) 135161.
r(A)
Interaction potentials as a function of the interatomic distance = L M p

(r) used in the MD simulations.

iie des Milieux et Matériaux de Poitiers
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Electroreforming of oxygenated compounds from biomass Hz

Molecular dynamics For more information: pascal.brault@univ-orleans.fr
GREMI

Pt Pt,Bi, Pt.Bi,

Snapshots at 20 ns for all considered Pt,_,Bi, atomic compositions

- Bi atoms are always decorating Pt core clusters
- The Pt core is crystalline
- Each cluster is stoichiometric: Pt/Bi atomic composition globally and locally preserved

- For 20 at. % Bi (Pt, gBiy ), the Pt core cluster is almost fully hidden by Bi atoms

15
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Selectivity by in situ FTIRS:
Glycerol

Working electrode

\ ‘ #RHE

AR /R

Electrolyte

Counter
electrode

CaF, window

In situ IR electrochemical cell

M. Simdes, S. Baranton, C. Coutanceau. Enhancement of catalytic properties for glycerol

electrooxidation on Pt and Pd nanoparticles induced by Bi surface modification . Appl. Catal.

B: Env 110 (2011) 40 — 49
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Electroreforming of oxygenated compounds from biomass Ll Université

Selectivity by in situ FTIRS: glucose oxidation
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N. Neha, T. rafaideen, R. B. S. Kouamé, S. Baranton, C. Coutanceau , Remarkably Efficient
Carbon-Supported Nanostructured Platinum-Bismuth Catalysts for the Selective / M P
Electrooxidation of Glucose and Methyl-Glucoside. Electrocatalysis 12 (2021) 1-14. L
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Electroreforming of oxygenated compounds from biomass Ll Université

Selectivity by in situ FTIRS: glucose oxidation
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(OH)so .
@ E <0.60 V/RHE: Glucose,,, — Glucose,; —% gluconate (Eley-readeal mechanism)

N. Neha, T. rafaideen, R. B. S. Kouamé, S. Baranton, C. Coutanceau , Remarkably Efficient
Carbon-Supported Nanostructured Platinum-Bismuth Catalysts for the Selective / M P
Electrooxidation of Glucose and Methyl-Glucoside. Electrocatalysis 12 (2021) 1-14. L
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Electroreforming of oxygenated compounds from biomass Hz @ Université

Selectivity by in situ FTIRS: glucose oxidation
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@ E > 0.60 V/RHE : Glucose,,, — lactone, <<
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(Bifunctional mechanism) products

N. Neha, T. rafaideen, R. B. S. Kouamé, S. Baranton, C. Coutanceau , Remarkably Efficient
Carbon-Supported Nanostructured Platinum-Bismuth Catalysts for the Selective L M P
Electrooxidation of Glucose and Methyl-Glucoside. Electrocatalysis 12 (2021) 1-14.
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Electroreforming of oxygenated compounds from biomass

Glycerol electroconversion 020 0.18]
0.16 1
] 0.75V ]
Glycerol , 010 I
~—~ 0.101
+water/NaOH ) <ot 0.55 V < o8-
). - ~f . ~ 0.06-
0.05- 0.041
0.02
..3 0.00
o ll = 0.00 . . ; 02
= 0 3600 7200 10800 14400 0 2 4 6 8 10 12 14 16
s S t (s Time (h)
> 4 E (©)
) O — 3 25 cm-2 electrolysis cell fitted with a Pt/C cathode and a
> f = ) Pt,Bi,/anode (electrodes: 1.6 mg cM, o,2); 2 M glycerol +
=0 ” 0.5 M NaOH, 20 °C flow rate = 2 mL min-!
Porous 1
separator . . . .
Reaction product distribution
(Except dihydroxyacetone)
. kWh neF . . .
We (m 3) e = ————Uce(j) = 2.364 Ucen(j) 100 Tajtronate
Nm 3600V X10 80 Hydroxypyruvate
. — -3
At 0.55 V: W, = 1.3 kWh sm,, $ 60 Glycerate
- — -3 o
At 0.75 V: W, = 1.77 kWh sm,,, 2 10/
Water electrolysis: 3.8 — 4.3 kWh / Nm3 204 Glyceraldehyde
J. Cobos-Gonzalez, S. Baranton, C. Coutanceau . Development of Bi-Modified PtPd Nanocatalysts 0

for the Electrochemical Reforming of Polyols into Hydrogen and Value-Added Chemicals

ChemElectroChem 3 (2016) 16941704 L M P

Institut de Chimie des Milieux et Matériaux de Poitiers
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Electroreforming of oxygenated compounds from biomass Hz

Glucose electroconversion
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Glucose electroconversion
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Glucose electroconversion
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0.05

Caluconate 35SUMINg 100% selectivity
0.044 Cgluconate by HPLC

& o] : Selectivity ~100 %; Faradaic yield ~100 %; ~40 % conversion
3 °

s At 0.30 V: W, =0.71 kWh Nm,,,"3

" 001 Water electrolysis: 3.8 — 4.3 kWh / Nm3

0.00

0 50 100 150 200 250 300 350 400
t (min)

Energy cost at 0.3 V: 1 molecule of H, is evolved by molecule of gluconate produced
CgH,,05 + OH- = C,H,,O, + H,

The production of 1 ton sodium gluconate is then accompanied with the evolution of 9 kg H,

The specific electrical energy consumed at 0.3 V corresponds to ca. 8.05 kWh kg,

Assuming a mean electricity cost of ca. 0.15 €/kWh in Europe, it corresponds to 11 €

Less than 3% of commercial prices for industrially produced sodium gluconate
600 to 750 US $, i.e. 750 to 950 CAD per ton (Dezhou Huiyang Biotechnology Co., Ltd., Wuxi Fengmin Environmental Technology Development Co., Ltd., etc.).

«MP
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Electroreforming of oxygenated compounds from biomass H @ Unjvérsité

Low current densities

Low hydrogen production rate

Problem of hydroxyl ions migration from cathode to the anode
Reaction of sugars/reaction products at the cathode

=> Use of an AEM + ionomer
Increase of sugars/polyols concentrations

anode reaction CH;,0,+30H - CH,;;0,+2H,0+2¢
cathode reaction 2H,0+2e — 20H +H,

Overall reaction CcH;,0,+OH — C,H,;0, +H,

=> increase of the hydroxyl ions concentration => problem of molecules stability

«MP
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PGM based catalyst: high cost, strategic materials, availability, etc.

=> development of non-PGM catalysts, electroactive at a potential as low as
possible and allowing achieving high current densities

=> Nickel is known to be an active materials for alcohol electrooxidation
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Synthesis on Ni(OH), nanoparticles by the water in oil microemulsion method
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Electroreforming of oxygenated compounds from biomass Hz @ Université

Activity and selectivity of Ni(OH), nanoparticles towards glycerol electrooxidation
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Cyclic voltammetry of a Ni/C catalysts recorded in 0.1 M NaOH (black ~In situ infrared spectra for the electrooxidation of 0.1 M glycerol in
line) and 0.1 M NaOH + 0.1 M glycerol (red line) media (scan rate = 0.1 M NaOH electrolyte on a carbon-supported Ni/C catalyst
10 mV S_l, metal Ioading e 50 ug Cm-z’ Sgeom - 0.071 sz’ T - 200 C) (T = 20 C scan I'ate 1 mV S-l, reSO|UtIOn 4 Cm-l).
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Activity and selectivity of Ni(OH), nanoparticles towards glycerol electrooxidation
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Both H, and HCOO- can serve as fuels in low temperature fuel cells
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The electroreforming of oxygenated organic molecules allows decreasing the
electrolysis cell voltage for hydrogen production

It is better to use wastes from bio-industries such as glycerol, C5 and C6 sugars
=> decrease of the OPEX for biofuels and hydrogen production

But the kinetics of electroreforming reaction are very low on PGM-based catalysts,
and more PGM are needed to enhance the reaction rate

=> Increase of the CAPEX
Increase of sugars/polyols and hydroxyl ions diffusion towards catalytic sites
Development of non-PGM based catalysts (Ni-based)

=> decrease of both the CAPEX and the OPEX
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Fresh PtyBi;/C Fresh PtgBi,/C
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~ Pt0 (79%), ¢ Bi%* (87%), ¥ Bi3* (8%), ¥ Bi** (5%) ~ Pt0 (71%), ¥ Bi°, ¢ Bi%* (69%), ¥ Bi3* (20%), * Bi** (11%)
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CVs of PtgBi;/C and PtgBi,/C recorded at 20 °C after 1000
potential cycles between 0.05 and 1.00 V in 0.1 M NaOH
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Initial polarisation curves of 0.1 M glycerol oxidation Polarisation curves of 0.1 M glycerol oxidation in 0.1
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after 1000 potential cycles
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