Thermal characterization of
AlGaN/GaN HEMTs using
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The AlGaN/GaN High Electron Mobility Transistor (HEMT)
High Power Applications, High power density (10GW/cm3!)

retal Con

tacke

Metal Contacks
IV quasi-isothermal curves

i VDSrna; 10 pDur Viag = BV, ‘,u'D Smax = ﬂ:lV peour V‘N— 1w
VDSma;x— qugrvN_ 6V, u’DSmax 10\.';: VM i
ulr\a"‘u—-ﬁ\a" U'DSmax lEIVpD r Vg, 3= v

pot

:Vc,s 1‘\.|r D S R

0,85 J i ff b
0,00 i Yoro W
0 5 10 15 20 25 30

Vps (V)

—_—
source VVGS Gate

AlGaN donor layer: doped

AlGaN spacer: undoped
LW ==

Substrate SiC/Si

Schematic cross section of conventional AIGaN/GaN

Tbaseplate

VDS/’ Si3N4 (20nm)
Drain

} Few nanometers

Hot area

\Thermal dissipation

0,75 4

0.60

0,45 -

Ips(Afmm)

0,30

0.15

0.00 4

Variation with
Tbaseplate

’ Université ?i!’
‘ de Limoges Um\( rsité

Poitiers

ceed



Introduction : How to determine a thermal model?

= Measurements techniques

e infrared, thermoreflectance, Raman spectroscopy, 3 omega,
electrical method, ...

e spatial and time resolution are not always suited to the size and
the use of the device

e the measured temperature may be not the temperature of the
active electrical area (thermal shunt)
= 3D thermal Simulation
e need the knowledge of thermal properties of materials
e need the device structure

e give temperature distribution of the whole device
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Thermoreflectance setup (1/2)

MICROSANIJ : NT 220C special

- 4MP Camera

- 4 light sources 365nm, 470nm, 530nm, 780nm
- spatial resolution 0.29um

- transient resolution 50ns

- thermal resolution on Au : 0.5°C (5min)
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Thermoreflectance setup (2/2)

The complex refractive index of a material changes with
~— Trigger —>

UL temperature, and the thermoreflectance coefficient Cth
3 simply represents the linear change in optical reflectance of a
% surface due to a change in temperature
g ,\A) measurements > e Device material properties
G | \ g * Illlumination Wavelength
_ Device A—R=Cth(/1@ * Microscope Numerical
Peltier stage+ Piezo R Aperture
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Temperature determination
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Choice of wavelength

Near UV 365nm Best sensitivity Blue 470nm
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Using thermoreflectance with HEMTs

Drain Vds
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Thermoreflectance measurements on GaN HEMT

UMS GH15 GaN HEMT 8x50
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Thermoreflectance measurements on GaN HEMT GH15 8X50

Transient image measurement
Width = 100us

Period = 1ms.

Vd =7V, Ids = 100 mA
Pdiss=0,7 W (4T =22 °C)

o AT
77 Pdiss

RTH = 31,43 oC/\N
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The AlGaN/GaN High Electron Mobility Transistor (HEMT)
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The 3w method: History and principles

* Lock-in amplifier Bandwidth :50 MHz
Agilent 81150A * Dynamicrange 120 dB

Zurich Agilent HF2LI
input - Ny

-----
v ©

RS

Corbino (1912), Cahill (1990)
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B is the transfer function between the “thermal
source” at 3w and Vdiff
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Extraction of Rth with 3omega method
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Conclusion & future works

* Thermoreflectance = surface temperature
 3omega= channel temperature
 Coherent results between
-thermoreflectance
-3o0mega
e Validation with FEM Simulation, understanding time constants

e Future works with thermoreflectance measurement
- Improving the measurement system
- Hyperspectral approach, virtual test set
- Comparison with Raman spectroscopy
* 3omega
-improving calibration
-using Rg(T) (Gate end to end)
 Thermal simulation at nanometric scale
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