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NAIVIE:

GDR NanoMaterials for Eneragy spplications
® Overview

Q@ Historic breakthroughs in electronics
@ Overview Q@ A variety of thermal analogues to the electrical

@ Scaling, power, trends, 3D integration, steady-state / transient components
® Thermal management for Integrated Circuits (IC) @ Analogies between linear electrical and thermal

® Rel components
elevant parameters ) )
P . @® Thermal rectifiers and thermal diodes
@ Thermal conductivity

. . @® Thermal transistors
@ Thermal interface resistance . .
® Thermal logical gates and memories

® Techniques ® Thermal memristors
@Passive: Thermal interface materials ® Active control of heat flux
® How about the quantum regime?
@ Applications @ Challenges and perspectives
@ Phase Change Materials devices
@ Optical components @ Radiative cooling and heating
@ Principles

@® Challenges and perspectives
g perspectiv @ Applications

@ Daytime radiative cooling
@ Nighttime radiative cooling
@ Radiative condensers (black silicon)

® Challenges and perspectives
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@ Trends

Q@ From “more Moore” to “system Moore”
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@® Trends
@ Flexible electronics
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@® Relevant scales

2m

10cm
2 cm

0.5mm -
100 pm

2nm -

Integrated
Circuit

Component

Heat sinks

Thermal Interface Materials
Integrated Peltier Cooling ?
Thermal floor planning

Through Silicon Vias
Routing strategies

Quality of interfaces

-> Thermal Interface
Resistance

Knowledge of materials
-> Thermal Conductivity

The 2 nm transistor in nanosheet structure.

(Credit: IBM)

(2021)

J.-F. Robillard

® Relevant parameters

At component scale, knowledge of
Thermal conductivity (TC)

Thermal boundary resistance (TBR)
becomes critical for IC design...

® Types of management

Active Passive
Peltier Heat sinks

Forced convection ~ Thermal floor planning
Vias-Routing

® Objectives of management

Component reliability
Heat spreading (data, com, memories...)

Component performance/efficiency
Noise reduction (imagers, detectors)

Component operation

« Heat as a resource »
Non-volatile memories (PCM)
Thermo-optical modulation



Thermal Management for 1C

@ Thermal interface resistance / conductance

GOR NAnoMaterials for Energy aspplications
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* Hopkins, P. E. (2013). “Thermal transport across solid interfaces with nanoscale imperfections: effects of roughness, disorder, dislocations, and bonding on

thermal boundary conductance.” International Scholarly Research Notices, 2013.
* Monachon, C. et al. , Annual Review of Materials Research, 46, 433-463.
* Maité Blanck et al, J. Appl. Phys. 125, 095302 (2019)
* A. Giri, and P. E. Hopkins, Advanced Functional Materials, 30(8), 1903857 (2020)
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Thermal Management for 1C

DR KARGREES LS For: Energy spibicatois @ Thermal interface resistance / conductance

T3 dependence at low T

« Thermal resistance at interfaces »
E. T. Swartz and R. O. Pohl, Appl. Phys. Lett. 51, 2200 (1987)
« Thermal boundary resistance »

Diffuse Mismatch model
C. Monachon, et al. ,
Annual Review of Materials Research, 46, 433-463.

E. T. Swartz and R. O. Pohl, Rev. Mod. Phys. 61, 605 (1989)
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Thermal Management for 1C

@ Thermal interface resistance / conductance

N. Horny

metal-metal : TBC is dominated by electron transport

* metal-nonmetal : TBC is dominated by phonon transport metal non-metal substraté J Lombard, F Detcheverry and S
o Merabia, J. Phys.: Condens. Matter 27
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Hopkins, P. E. (2013). “Thermal transport across solid interfaces with nanoscale imperfections: effects of roughness,
disorder, dislocations, and bonding on thermal boundary conductance.” International Scholarly Research Notices, 2013.
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@ Thermal interface resistance / conductance
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Thermal Management for 1C

Time or frequency domain Photothermal Radiometry
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Multiscale thermal characterization techniques
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Thermophysical characterisation of VO, thin films hysteresis
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@® Applications @ Phase Change Materials devices

Low Thermal Boundary Resistance
Interfaces for GaN-on-Diamond
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OB s e By ® Applications @ Thermoelectric Energy harvesting
c-Si Membranes

Attempts to integrate membrane-like or NW TE Converters lead to : 00 3ongme
new thermal management issues.

Mainly related to the vertical to horizontal heat flux redirection
And air exchange.
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Conduction M. Haras et al. IEEE Electron Device Letters, 37, 1358 (2016) D. Tainoff etal . Nano Energy 57 804-810 (2019)
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Thermal Management for 1C

@ Applications @ Phase Change Materials devices

Transition between amorphous and crystalline phase ks
Phase transition — current induced Joule heating
Information stored in the resistance of the alloy

-
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J.-F. Robillard

e i h
£ 5007 si0, GST |

R. Simola
T Amorphization |
1000[ ' | —TBRat GST/SIO, only]
300 nm 900 ! 1—With TBRand EIR |
! /i— EIR at GSTITiN only
800 1= TBR at GS TN only | |
4 - !4 Without TBR and EIR |
s0nm O e
- '; 600 W
100 nm

Amorphization Crystallization

John P. Reifenberg, et al.

IEEE Electron Device Letters, 31, NO. 1, (2010)

T | g | GsT  sio, P
= 90 g "o |1
z "M E 200 "
RESET £ Foom Rl | _f‘%i
-
100f -=" fin
SET o0 e Sl %0 25 0 25 50 75 100 125 15
X position (nm)
READ READ - (a)
k 1 . 500 nm
i : i : : : 1.0 1.5
i : § Voltage [V] J. Wen et al IEEE Transactions on Electron Devices, 67 (2020)
A. Pirovano et al IEEE Tvpi : :
S . — ical thickn f uelec layers h hermal resistan
{ i : : i Trans. Electron Devices, 51, 452 (2004). yp cal thicknesses of pelec layers ?'Ve at e, a, esistance
I : ” equivalent to TBR. TBR can be a major contribution to the
( g TIN/GST DMM using (b) total thermal resistance.
:i/ | i/‘ 2 30 measured heat capacity
; S E E
: o i g =
S Poly-crystalline
i = g ; i i P iy @ 20 ]
5 == 5 -0 2 Amorphous
: : : o “é. 18 ] Reset: high R — 1
: : ] 3 o]
s A S T+ 3.\ 2 TINGST AUITIN
: H : 1 (\N:ug g 10
et/ m L
cryst. ﬁ v
£ 5 @ § 5ue g ¥ | 4 Insulator
L Time(10ns) | é’ . . Sl b - i ,
., 0 50 100 150 200 250 300 350 K TRt
“o 1'% E_S} Temperature (°C)
amorph. et

IBM Research / Memory Technologies

11



mal Management
NAME Ther for IC

® Applications @ LIDAR: Beam steering with thermo-optical waveguides

GDR NanoMaterials for Eneray spplications

J.-F. Robillard
S. Monfray

Hundreds of mi?rons .
' : SiN waveguides
> gu
* For IR (905 nm) pr 'f‘ihfi"
+  SiN waveguides :"\\_H ....
* Thermo-optical modulation :fr"::“ ¢ > ::1 gratings . . ‘ Heaters
* Challenge=go to high frequencies (10-50kHz) H‘\) o - Oand ¢
* Need for thermal optimization [ 4 e angle-tuning
:::'se Rabinovich et al. , Opt. Eng. 55, 111603 (2016)
shifters
@ Detection and imaging : Single Photon Avalanche Diodes
-\Diode -V Response Curve
* Dark Count Rate
* Noise Eq. Power
Can be highly improved
= i through local cooling

1 pA A Vi A} . - .
0 10 20 30 40
S1905 nm Reverse voltage (V)
Ge 1300 nm R. E. Warbuton et al. , Trans. on Electron devices, 60, 3807 (2013)
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TIMs for 5G/Al/Semiconductors

Thermal Management for 1C

Electrically conductive adhesives - alternative to solders (electronic packaging)

Elastomer socket powder — semiconductor testing

Conductive powder - touch screen panels

Ag Au

”Ni+ Ag + Au

High thermal ceramic paste for spray — electrical insulator / spray

Au

Thermal conductivity (W/mK)

High Thermal Ag Sintering Paste — high thermal conductivity

EMC

Dot 88

® Techniques o Passive: Thermal interface materials

Ultrahigh phonon conductivity materials

1000

Graphene/nanotube Ultrahigh thermal
1000} conductivity materials
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100 | Polymers 1) gG?N Al BP
- i
H O Ge
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10} i b
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1 i o ceramics, metals
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Coefficient of thermal expansion
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acoustic phonon bunching

Primarily Synthetic diamond, BN, SiC, Ag, Al, and Cu

large acoustic-optical gaps e.g., BP, BAs
~ . _

E 1400 =
2 1200} e * BAs
z .
2 1000 [ ]
S L ]
-
2 800 e %
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® 600 LL
E *e
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Temperature (K)

J. Maire
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® Techniques

@ Passive: Thermal interface materials

2D Materials for thermal management

Fillers for Polymer-Based TIMs

* Ultrahigh thermal conductivity of graphene (semi-metal)
* high conductivity of h-BN (insulator)

a ALO, ) b BN nanosheet < Graphene

Spm

~d_ carbon nanotube e Ag f Hybrid filler

high k with minimized filler loading

» graphene flakes with Ag particles
* h-BN flakes with SiC nanowires
* Ag flakes with CNTs

Thermal Management for 1C

Direct Use for Thermal Management

2D Materials and 3D assemblies

Compression /‘;D foam o

B

Compression

3D-Interconnected Graphene and H-BN Macroforms Graphene
and h-BN Thin Films for Heat Spreaders
Graphene Fibers for Thermal Management

J. Maire
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Thermal Management for 1C

@ Challenges and perspectives

NAME

@ Challenges

Heterogeneity : increased functionnal density leads to more materials and complex structures
Mechanical flexibility : can lead to extra thermal resistance due to transfer bonding

Metrology : TBR in realistic devices stacks

Modeling : Taking into account non-Fourier conduction in complex structures

Introduction of nanostructures in devices (NW, membranes) : Leads to new challenges in thermal design

Paradoxically, high thermal conductivity nanostructures (carbon NW, graphene) can lead to degraded thermal management

@ Perspectives

Very high phonon conductivity materials
Integrated Peltier cooling

« Heat as a resource » devices (PCRam, PC Switches)

15
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@®Thermal Management

About this workshop: Thanks to all contributors :

* Very rich contents within the GDR and beyond

* We realized that some topics are not covered at all -> Please join ! Youn¢s Ezzahri

* This 1s quite transversal topic and related to other Workshops. Jean-Frangois Robillard
Philippe Ben-Abdallah

Difficulties: Jérémie Dreévillon

* Terminology and scope definition Nicolas Horny

Karl Joulain
Jérémie Maire
Stéphane Monfray
Elyes Nefzaoui
Stéphane Pailhes

The full presentation, Roberto Simola

including Radiative Cooling and Thermotronics,
will be presented in next session, October.

16
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@ Historical breakthroughs in electronics

¢ Diode @ Transistor (FET)
AE e | -
F. Braun + - - 2 L] :
1874 Forward bias f J. Bardeen, W. Brattain, N

W. Shockley
1947-1951

I
- P+ T

» Perfect rectification of current Reverse bijs

Va
Forward hias
V—

Beverse bias

» Electrical switching
» Modulation

@ A variety of thermal analogues to the electronic components
» Current amplification

N. A. Roberts and D. G. Walker, 1JTS, 50, 648 (2011).

40

”1936: First experimental observation of
thermal rectification”

[] 14
L 212 . .
8 10 C. Starr, « The copper oxide rectifier », Journal of Thermal diode N,
| 3 < ::l . ) o thermal analogue for the
. 28 Applied Physics, 7, 15-19 (1936). ) . ) gue ft '
ful 31 - . Thermal rectifier electrical inductance!!
Bosl 9§ 1 m Thermal switch
5 5| 2000 2002 2004 2006 2008 2010 _é 3o | 188
g v § Thermal regulator
= ERCE Thermal transistor )
st 5 Thermal logical gates
2920 1930 1940 1950 1960 1970 1980 1990 2000 2010 2020 j; 0T 70 Thermal memOI’y
decade 2 = Thermal memristor .
Fig. 1. Number of publications on thermal rectification per decade since 1936. 24 Theﬂnal I'CSIStOI'
7 .
o N Thermal capacitor
1900s  2001-2005 2006-2010 2011-2015 2016-2020
Fig. 2. Number of publications of thermal diode studies from the 1900s to present. . .
Thermal circuit
M. Y. Wong, C. Y. Tso, T. C. Ho and H. H. Lee, IJHMT,

164, 120607 (2021).
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@ Conductive regime

B. Lietal, PRL, 93, 184301 (2004).

power spectrum

P. Ben-Abdallah
Y. Ezzahri
K. Joulain

@ Thermal rectifiers and thermal diodes

@ Different mechanisms
» Conductive regime: Asymmetric mismatch in phonon spectra (Nonlinear lattice coupled with harmonic spring) / Asymmetric
Kaptiza resistance / Asymmetric temperature dependent thermal conductivity / Metal-insulator transition (hysteretic thermal

behavior of Phase transition materials PTM)— Phononics.

» Radiative regime: Resonance modes and broadband (selective emitters, superconductors and PTM) — Photonics.
» Convective regime also.

{a) Forward thermal bias
€ from Lefl to Right

{b) Reverse thermal bias
¢ trom Right 1o Lelt

@ Experiment
® Theory

Segment | Segment 2

Segment | Segment 2

C. W. Chang et al., Science, 314, 1121 (2006).

4 4
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Two slabs of SiC-3C and SiC-6H

@ Radiative regime

@ Thermal rectifiers and thermal diodes

Vacuum ? @
m

P. Ben-Abdallah
Y. Ezzahri
K. Joulain

® Experiment
»Using phase change (tran51t10n) materials
or superconductors

S. Basu and M Francoeur, APL,
98, 113106 (2011).

Ty=400 K. N,

® Theor m' T :
Si Sr y b Mott transition V02
> - . ~ i .51 Phase coexistence
g 3 Thin film and bulk , % . i at340K ————
. z 1 = s
— — doped Sl :> ; e % oF: :: 5104 Monoclinic Tl
= =10 nm = S 4 3L Insulator Rutile
4 ) H £10 ;!
« 20l(®) Y. Yang et al., APL, 103, 163101 (2013). ?’ i 040§ (8} Forward Bias 2 1) metal (R}
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@ Conductive regime
® Theory
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@ Active control of heat flux
@ Shuttling and ratcheting

@ Heat splitting
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L Latella et al. Phys. Rev. Lett. 121, 023903 (2018). ' ' ’ '

@ Mechanical control
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Nanon 11, 515 (2016).

243102 (2011).
D. Thompson et al.,

Nat. Nano, 15, 99 (2020).

» Using Qubit-Qutrit coupling
B. Guo et al., PRE, 98, 022118 (2018).

Q
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® How about the quantum regime?

@ Thermal diode

T. Werlang et al., PRE, 89, 062109 (2014).

My
E, g

» Using Colomb-coupled

Y. Zhang et al., EPL, 122, 17002 (2018).

@ Thermal transistor
K. Joulain et al., PRL, 116, 200601 (2016).

» Using Superconductors

M. Majland et al., PRB 101, 184510 (2020).

P. Ben-Abdallah
Y. Ezzahri

K. Joulain
T,=273K
E;,=0.8eV

P. Ben-Abdallah et al. APL, 107,
053109 (2015).
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@ Challenges

» The operating time scale in nanostructures
(~ps to s) is limited by the thermal inertia. |:>

@ Perspectives

> Extension of the developed concepts to the conductive regime
using Phase Transition Materials (e.g VO,).

> Exploring and deepening the analysis of the dynamical regime.

» Towards smart hybrid circuits and structures optimizing heat
management and electronic operation ...

» Towards a full heat information treatment structure...

& Challenges and perspectives ® Two dimensional materials

P. Ben-Abdallah
Y. Ezzahri
K. Joulain

» Transition metal dichalcogenide
monolayers could allow to design thermal
transistor operating at submicrosecond scale v

@ Systems far from equilibrium

> Electrons and phonons at different
temperatures.
» Heat flux control at pico and

~ subpicosecond scale...
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Using the cold darkness of space

heat dissipated by thermal radiation

at night, objects and the
ground cool by radiation,
become colder than ambiant

Ciel clair la nuit

$
= . Is S + .
8 Refroidissement radiatif T(air)
b Baisse
= importante
§ ) L ! Infrarouges

I | i

: VLT
ol L 1 ’1 ¥ IR T T J'ﬁ. 1 ,_-"'{‘\, \ kﬂ "_. Ao ) Sol
0 2 4 6 8 10 12 14 16 18 22
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Radiati r—

Emission
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Always composed of two main parts aiming to

. increase the reflectivity of the structure in the short wavelength range (0,3-2,5 um) -
>solar spectrum

. Enhance the emissivity of the structure in the atmospheric window (8-13 um)

AP. Raman et al., Nature, 515, 540 (2014).
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m  Flexible film

Glass spheres
embedded
in a transparent, |

and flexible \

polymer

Silver mirror backing
reflects solar radiation

N

GDR NphoMs

Glass spheres constantly emit
infrared light and release heat

Nano/micro Porous Polymer
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KSiO2 nanofibers

x 1
R =
w
3 o8
.
Solar Radiation 0.3:2.5 um Windw |8-13 B
% 086
%
Wi E
Z o4
E
Si0; Fiber Coating -
Substrate §°‘2
-
[
8
“ 0

Wavelength [um]
R. Yalcin et al., Solar Energy Materials and Solar Cells,2020

@ Black silicon (Bsi)

SEM Imaging
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process

(K- Nguyen et al JAP, 2013)

Experiment
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— HighlyDoped Black Si
1 1

5 10

Wavelength(um)

J. Drévillon
E. Nefzaoui

Coolingwood  Natural wood

Temperature (°C)

S X 8 &

)8
/ |

12°%C

== Ambiant

Composition (%)

100

\

N B O @
S S © o

0

' ‘ 15 1— Cooling wood
z == Natural wood
- 10

14:40 14:50

\T. Li et al., Science, 364, 6442 (2019).

1500  15°

Il Natural wood
I Cooling wood

Cellulose Hemicellulose @

@ Colored PDRC

flects Solar H: Emit iation
at Sol rum (08" 4 um]  at Atmos nclnfr 'd Window

.

S -‘.' /. .

.
e . .o-l.'o,' . - - -."'.'.--
=] e e “ aw . =0 e )
8 -'. .. . ®a R e e b P . & 1'.
B | e e s G e e et
610 e ey T e el g el -...-_a:‘.‘>
302' * e s . . e
.. - . we e = aes . A
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Y. Chen et al., Science Advances, 6, 1 (2020).
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@ 7 NAME
@ Human body cooling Y. Ezzahri

& Applications
o Multiple pOtential applications: daytime — Y. Peng et al, Nature Sustainability, 1, 105 (2018).
and nighttime cooling ‘ MH -
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@ PV/TPYV cooling -

Air Cooling

Atmosphere

Radiative
Cooling PJ

Conﬁgcticn
Convection,

Z.ZHOU et al., Optics Express, 27, A404 (2019).
@ Enhancing thermoelectric generation
A. P. Raman et al., Joule, 3, 1 (2019).

Generating light from darkness!
> Radi-cool
@ Start-UP adi-coo
CEO: Ronggui Y:
> Sky-cool e e

PV Cell
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@ Challenges and perspectives

@ Challenges
> Nanofabrication |:> > Transition to the industrial scale.

. > Size control during elaborati .
> Nano/micro porous structure and nanofibers 1z uring lon (¢.g

electrospinning of different materials,...
» QOutdoor use: UV radiation / humidity / dust,...

> More precise models for the transparency of the atmosphere and the radiative flux from the environment

@ Perspectives

> Numerous proofs of concept: optimization and upscaling.

> More generally: Optimization of the use of the cold darkness space!
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